立方体卫星技术能够精确检查轨道物体,从而有效地协助各种近距离操作。这些应用包括评估非活动卫星以准备执行活动碎片清除任务、监控和维护运行中的航天器(如国际空间站或电信卫星)等任务。展望未来,立方体卫星还可用于检查深空物体,包括将作为未来阿尔特弥斯计划探索任务门户的地月人为站。此外,立方体卫星还可以通过协助组装大型空间基础设施、重新配置和/或翻新/加油空间资产,甚至在舱外活动期间为宇航员提供支持,在服务任务中发挥作用。检查轨道上的航天器的任务已被证明相当具有挑战性,但立方体卫星和纳米卫星有可能通过在目标附近作为自由飞行器运行,配备适当的传感技术来观察和收集数据,从而完成这一角色。对在轨航天器进行近距离检查具有多种优势,可应用于两大类,即监测运行中的太空资产以增强其能力并支持其任务,以及检查太空垃圾以准备并可能执行主动清除任务。各组织已考虑纳入紧凑型平台,以促进实现上述任务目标 [4] [5]。在美国和欧洲,已经执行了任务,目前正在开发中,研究机构、大学和私营企业的参与 [1] [2]。通过这些任务和研究,很明显,必须解决与近距离操作和编队飞行相关的许多障碍,以确保即将执行的任务具有必要的安全水平 [3]。本文的重点是探索太空骑士观察立方体 (SROC) 的会合和对接能力的研究。
摘要——本文介绍了一种使用 Brahms 多智能体建模语言对模型进行形式化验证来确保宇航员探测车 (ASRO) 团队自主系统可靠性的方法。行星表面探测车已被证明对几次载人和无人月球和火星任务至关重要。第一批探测车是遥控或手动操作的,但自主系统越来越多地被用于提高探测车操作的效率和范围,例如 NASA 火星科学实验室。预计未来的载人月球和火星任务将使用自主探测车协助宇航员进行舱外活动 (EVA),包括科学、技术和施工作业。这些 ASRO 团队有可能显著提高地面作业的安全性和效率。我们描述了一个新的 Brahms 模型,其中自主探测车可以执行几种不同的活动,包括在 EVA 期间协助宇航员。这些活动争夺自主探测器的“注意力”,因此探测器必须决定哪些活动当前最重要,并参与其中。Brahms 模型还包括一个宇航员代理,它可以模拟宇航员在舱外活动期间的预测行为。探测器还必须对宇航员的活动做出反应。我们展示了如何使用 Brahms 集成开发环境模拟这个 Brahms 模型。然后,还可以使用 SPIN 模型检查器通过从 Brahms 自动翻译到 PROMELA(SPIN 的输入语言),根据系统要求对模型进行正式验证。我们表明,这种正式验证可用于确定任务和安全关键操作是否正确执行,从而提高 ASRO 团队行星探测器自主系统的可靠性。
舱外机动装置 (EMU) 内的现行废物管理系统由一次性尿布——最大吸收服 (MAG) 组成,它可以在长达 8 小时的舱外活动 (EVA) 期间收集尿液和粪便。长时间接触废物会导致卫生相关的医疗事件,包括尿路感染和胃肠道不适。从历史上看,在使用 MAG 之前,宇航员在开始体力消耗大的太空行走之前会限制食物摄入量或食用低残渣饮食,从而降低他们的工作绩效指数 (WPI) 并带来健康风险。此外,目前的 0.95 升宇航服内饮料袋 (IDB) 无法为更频繁、更远距离的太空行走提供足够的水,这更有可能出现需要延长离开航天器时间的应急情况。每磅货物运往太空的高昂运输成本和资源稀缺性加剧了这些挑战,凸显了节水废物管理的必要性。本文介绍了威尔康奈尔医学院梅森实验室开发的一种新型宇航员宇航服内尿液收集和过滤系统,该系统可以解决这些卫生和补水问题。该装置通过外部导管收集宇航员的尿液,并使用正向和反渗透 (FO-RO) 将其过滤成饮用水,创造可持续的卫生循环水经济,增进宇航员的健康。这项研究旨在使用改进的 MAG 实现 85% 的尿液收集率。改进的 MAG 将由内衬抗菌织物的柔性压缩材料制成,尿液通过硅胶尿液收集杯收集,该杯因男性和女性宇航员的不同而不同,以符合人体解剖学。湿度传感器检测到杯中尿液的存在,便会触发通过真空泵的尿液收集。 FO-RO 过滤系统的目标是至少回收 75% 的水,同时消耗不到 10% 的 EMU 能源。为了满足健康标准,滤液保持低盐含量(< 250 ppm NaCl)并有效去除尿液中的主要溶质(尿素、尿酸、氨、钙)。
太空探索的主要挑战之一是妥善保护宇航员免受太空环境的危害。因此,宇航服是为了在舱外活动期间保护机组人员而设计的,但它们目前无法妥善承受微流星体和轨道碎片 (MMOD) 等撞击造成的损坏,如果被刺破,它们会减压和坍塌,造成灾难性的后果。在这种情况下,将自修复材料整合到宇航服中的可能性引起了科学界的关注,因为它可以实现自主损伤修复,从而提高安全性和使用寿命。然而,太空环境对这些材料的影响仍有待确定,并可能导致其整体性能显著下降。本文介绍的研究重点是应用于宇航服的第一个例子,分析了一组候选自修复聚合物在暴露于模拟太空辐射之前和之后的修复性能。在未辐照的情况下,还对双层膜和以这些聚合物为基质的纳米复合材料进行了比较。本研究还旨在通过将自修复材料的标准表征(例如:划痕、冲击和穿刺测试)与空间辐射对其影响的评估相结合,填补这两个方面的空白。了解辐射是否以及如何影响损伤恢复性能,实际上是确定给定的自修复材料是否真的可以用于太空应用的基础。通过穿刺损伤后的现场流速测量来评估自修复响应。收集最大和最小流速、它们之间的时间以及穿刺后 3 分钟内损失的空气量作为修复性能参数。对于纯材料,然后在伽马射线辐照样品上重复相同的测试,以研究暴露于模拟空间辐射后自修复性能的变化。结果表明,粘性响应较低的系统的修复性能较高,辐照后修复性能会降低。因此,需要进一步分析空间环境对所呈现材料的影响。 NASA HZETRN2015(高 Z 和能量传输,2015 版)软件也用于模拟舱外活动期间银河宇宙射线对航天服的作用。将经典的航天服多层与将标准内胆替换为每种分析材料层的配置进行比较,以确定最有希望的候选者,并确定添加纳米填料是否会显着提高屏蔽能力。
检查、加油、升级、维修或救援卫星,清除轨道碎片,以及建造和维护大型轨道资产和基础设施等要求对于在轨空间基础设施的维护非常重要。到目前为止,所有值得注意的维修任务都是由宇航员舱外活动 (EVA) 在低地球轨道 (LEO) 上执行的。然而,这些操作风险大、成本高、速度慢,有时甚至不可行。EVA 可以被机器人在轨维修 (OOS) 取代,在此期间,任务由空间机械手系统 (SMS) 执行,在文献中也称为追逐者或服务者。它们由一个卫星基座组成,该基座配备一个或多个带有抓钩装置的机器人机械手(臂),并由视觉系统驱动,从而能够捕获目标(客户)卫星。SMS 也可以是安装在空间设施上的大型维修机械手。本研究课题重点关注在轨操纵和捕获,以及与这些活动相关的方面。因此,它包括与刚性和柔性 SMS 的动力学、相关的接触动力学、空间系统的识别方法、监控和控制所需的姿势和状态感测、抓取目标的运动规划方法、运动或交互任务期间的反馈控制方法以及此类系统的地面测试试验台相关的工作。该研究主题包括五篇文章。在《从空气轴承支撑的测试数据估计空间机械手的振动特性》中,李等人从理论和实验上研究了与平面实验测试试验台相关的问题,该试验台使用空气轴承垂直支撑缩放 SMS 并在平面上创建零重力环境。作者指出,空气轴承会影响缩放 SMS 的动力学行为,从而影响其表观关节的刚度和阻尼、固有频率和振动响应。作者提出了一套程序来消除空气轴承的影响,并从电机制动系统的测试数据中识别真实的等效关节刚度和阻尼。识别惯性特性,并使用遗传算法确定等效关节刚度和阻尼。通过消除空气轴承引起的额外惯性,可以估算出机械手的真实振动特性。在《废火箭级在轨机器人抓取:抓取稳定性分析和实验结果》中,Mavrakis 等人研究了废火箭级的抓取,分析了抓取稳定性,并展示了实验结果。提出了一种评估废火箭级机器人抓取稳定性的新方法,该方法基于计算 Apogee Kick Motor 喷嘴的两指抓取的固有刚度矩阵,并将稳定性指标定义为局部接触曲率的函数,材料特性、施加的力和目标质量。稳定性指标是