1.1 结构要求 1.1.1 本部分适用于2006年4月1日及以后入级本社并签订建造合同的船舶。注:“签订建造合同”是指未来船东与造船厂签订船舶建造合同的日期。有关“签订建造合同”日期的更多详细信息,请参阅IACS程序要求(PR)第29号。1.1.2 本部分适用于长度L CSR-B为90m及以上的全球无限制航行的单舷侧和双舷侧散货船的船体结构。散货船是指通常采用单甲板、双底、底边舱和顶边舱建造,在货物长度区域采用单舷或双舷侧结构,主要用于运输散装干货的远洋自航船舶,不包括矿砂船和兼用船。本部分涵盖至少一个货舱采用底边舱和顶边舱建造的混合型散货船。未采用底边舱和/或顶边舱建造的货舱中构件的结构强度应符合本部分定义的强度标准。1.1.3 本部分包含适用于具有下列特性的所有类型散货船的 IACS 对船体尺寸、布置、焊接、结构细节、材料和设备的要求: ・ L CSR-B < 350 m ・ L CSR-B / B > 5 ・ B / D < 2.5 ・ C B ³ 0.6 1.1.4
在役声发射 (AE) 监测能够对主要结构细节区域进行全局监测,以便尽早发现活动裂纹和损伤演变。AE 源严重程度是缺陷严重程度和相关结构风险的量度,从而减少了基于传统检查和建模方法的结构评估中的当前不确定性。当与应变监测和断裂力学分析的最新发展相结合时,它是一种用于疲劳裂纹检测和全寿命损伤评估的强大工具,具有提高平台可用性的潜力。本文概述了金属中稳定疲劳裂纹扩展的底层物理原理以及相关微断裂事件产生的声发射。给出了在役船体结构细节全局 AE 监测的示例。描述了用于建模疲劳裂纹扩展和相关声发射的新型分析软件,该软件结合了我们对原子尺度断裂力学理解的最新发展。用于检测海洋钢结构疲劳损伤的 AE 传感频带通常在 50 到 300 kHz 之间,具体取决于背景噪声。最大可接受缺陷尺寸定义了所需的 AE“可检测性”。可检测性取决于裂纹扩展步骤的大小和速率,这决定了传感器间距和监测持续时间,以实现可靠的检测、定位和评估目的。疲劳损伤评估和裂纹寿命预测的重要附加信息是所关注结构细节中关键位置的标称循环应变。此裂纹寿命预测与 AE 一起提供了船舶经历的结构疲劳响应曲线。了解与测量的 AE 相关的操作和环境概况将为结构生命周期管理提供基础。作为 USCG VALID 项目的一部分,给出了“USCGC BERTHOLF”上潜在疲劳敏感结构细节的临时结果。概述了在英国海军舰艇上的类似更大规模应用。
2022 年 5 月 11 日通函第 314-04-1757c 号附录 2 海船入级和建造规范,2022 年,ND 编号 2-020101-152-E 第十四部分 焊接 3 焊接接头试验 1 表 3.1.1.2-1. 表格标题由以下文字替代:ʺ 根据 ISO 17635:2016,用于检测所有类型焊缝(包括角焊缝)可及表面缺陷的普遍接受的方法ʺ。 2 用下列文字代替第 3.1.2.1 款:ʺ 3.1.2.1 焊接接头的无损检测和质量评估应由能力和状态符合国家或国际标准认可要求的检测实验室(中心)进行。由登记处(СПЛ,表格 7.1.4.3)或其他授权国家机构颁发的认可(认可)证书是确认检测实验室能力的文件。在后一种情况下,应在焊接开始前向登记处验船师提交证书副本及其附录。对进行无损检测的检测实验室的要求及其获得登记处认可的程序符合《船舶建造和船舶材料和产品制造技术监督规则》第 1 部分第 10 节“技术监督一般规定”的规定。ʺ 3 第 3.1.3.1 款由下列文字替代:ʺ3.1.3.1 检测范围和检查点数量应由造船厂和登记处商定。除非另有约定,船体结构焊接接头的检测计划应制定并提交登记处批准。对于管线以及在登记处技术监督下生产的特定产品,可在相关图纸上提供必要信息,而不必单独起草文件。检测计划应包含下列信息:.1 焊接结构验收时需检测的详图和焊接接头;.2 检测范围和方法;.3 预先确定的检测位置示意图;.4 焊接接头质量评估要求;.5 检测标准或书面规范。ʺ 4 将 3.2.2.1 - 3.2.2.2 款替换为下列文字:ʺ 3.2.2.1 焊接接头的目视和测量检测应符合 ISO 17637:2016、ISO 6520-1:2007 或其他商定的国际和国家标准的要求。 3.2.2.2 应进行焊接接头的目视检测以揭示焊缝表面缺陷和受影响区域,包括最常见的缺陷和区域(按照 ISO 6520-1:2007 进行标记):裂纹(100、104);咬边(5011、5012、5013);未填充的凹坑、凹陷、流痕、未填充的坡口(2025、506、509、511);
09-05 疲劳分析与设计中的平均应力评估 提交人:Stig Berge,挪威科技大学海洋技术系(挪威特隆赫姆 7491)。传真 +47 73595528 电子邮件:stig.berge@ntnu。no )和 S.Petinov,材料强度系,圣彼得堡国立理工大学(俄罗斯圣彼得堡理工大学 195251,Polytechnicheskaya St. 29,电话:7-812-552-6303 电子邮件:Petinov@SP5198.spb.edu ) 1.0 目标 1.1 平均应力是船体结构细节的载荷历史和疲劳的重要组成部分。当拉伸时,它会增加载荷循环中的最大应力并缩短结构部件的疲劳寿命。不同方法之间缺乏共性,因此有必要验证模型并协调规范。1.2 但是,在随机和恒定载荷成分组合的情况下,缺乏评估平均应力影响的适当方法。1.3 该项目的目标是审查有关该主题的可用数据,计划和开展结构钢实验,分析结果并制定用于海洋应用的疲劳分析中平均应力影响的评估方法。2.0 背景 2.1 船体和海洋焊接结构的设计规范最近大多忽略了平均应力对关键细节疲劳性能的影响。ISSC 于 2003 年进行的一项调查报告称,8 个主要船级社中有 6 个使用了平均应力校正因子。在最近通过的《油船和散货船共同结构规范》(IACS,2005)中,实施了平均应力修正,尽管油船和散货船的形式截然不同。最近在 IACS 文件中建议的考虑程序是引入等效应力,这允许考虑残余焊接应力和 SW 载荷条件下的平均应力。2.2 但是,应用修正和等效应力可能仅被视为近似值,因为它基于具有恒定幅度和平均应力的组合循环应力的隐含假设。2.3 海洋应用中载荷序列的特定属性是窄带随机波载荷和缓慢变化(或恒定)载荷的组合,被视为平均应力的来源。这意味着隐含的实验程序和材料疲劳行为的相应建模应考虑平均应力与实际变幅载荷的影响。这将揭示循环应变硬化或软化的具体性质
图 1-1. 菲律宾共和国苏禄海,显示 USS GUARDIAN 在图巴塔哈礁海洋公园搁浅的位置。 ......................................................................................................................... 1 图 1-2. USS GUARDIAN(MCM 5)于 2013 年 1 月 17 日早晨在图巴塔哈礁搁浅。 ........................................................................................................................... 2 图 1-3. MDSU ONE 潜水员在船体分段前拆除机械。 ........................................................................................... 5 图 1-4. 冬季季风季节的强风和海浪有时会限制打捞者进入船只的能力并削弱船体结构。 ........................................................................................... 7 图 1-5: 图巴塔哈礁和搁浅地点的水深测量(水深以米为单位),由菲律宾 NAMRIA(国家测绘和资源信息局)提供 ........................................................................... 8 图 2-1.指挥与控制组织结构图 – 第一阶段和第二阶段 .............................................................. 2-2 图 2-2. 指挥与控制组织结构图 – 第三阶段和第四阶段 .............................................................. 2-3 图 2-3. 指挥与控制组织结构图 – 海上 .............................................................................. 2-6 图 5-1. 收到 USS GUARDIAN 初始搁浅状况报告后执行的 POSSE 建模的屏幕截图。 ............................................................................................. 5-2 图 5-2. SMIT BORNEO 锚泊计划。 ............................................................................................. 5-4 图 5-3. SMIT Borneo 起重机能力曲线。请注意,在 0.5 米或 1.0 米波浪条件下,起重能力会降低。 ............................................................................................. 5-4 图 5-4. 打捞计划初稿中 USS GUARDIAN 船体剖面切割。 ............................................................................................. 5-5 图 5-5. JASCON 25 位于珊瑚礁旁边。请注意,为了保持最大起重能力,它与珊瑚礁非常接近。 ........................................................................................................... 5-6 图 5-6. 敏感/高价值物品打捞。USNS SALVOR 的工作船由 MDSU One 船员驾驶,与 USS MUSTIN 一起卸载从 USS GUARDIAN 上卸下的高价值材料。 ........................................................................................................... 5-7 图 5-7. 处于 DP 模式的 VOS APOLLO 位于礁石旁,从 GUARDIAN 上取下燃料和油性废物。请注意船只之间的浮标软管。 ........................................................................... 5-8 图 5-8. 图巴塔哈保护区管理委员会致菲律宾海岸警卫队的信,宣布同意 SMIT 打捞计划............................................................................. 5-10 图 5-9. Smit 打捞者乘坐 Bully Pugh 从 JASCON 前往 GUARDIAN ................................................5-11 图 5-10. 当烟囱从 GUARDIAN 上吊起时,SMIT 和 MDSU ONE 团队成员站在 02 层前方。 ........................................................................................... 5-12 图 5-11. 02 层平面图,吊索路径用红色覆盖。 ......................................................... 5-13 图 5-12. 02 层从 JASCON 25 转移到 Archon Tide,以便进一步转移到驳船 S-7000。请注意背景中的 GUARDIAN,而 01 层仍在。 ........................................................... 5-14 图 5-13. 01 层平面图显示蓝色切割线和红色吊索路径。 ........................................................... 5-14 图 5-14. 01 层向前从 GUARDIAN 上吊起。注意海浪拍打在船体上。此次吊起之前,GUARDIAN 曾连续几天遭遇大浪,导致无法正常作业。 ........ 5-15 图 5-15 – 辅助机械室起吊布置 .......................................................................................... 5-17 图 5-16. 2013 年 3 月 26 日,船首部分在起吊前张紧。请注意剩余船体部分和吊索上切出的检修孔,这些部分和吊索已经为 AMR 起吊运行。 ...... 5-17 图 5-17. 3 月 30 日进行的船尾部分起吊,清理了礁石,以便进行最后的清理。 ...... 5-18