自动船的出现代表了海上技术的重大进步,有望提高效率,降低运营成本以及降低甚至完全从危险环境中撤离人员。但是,由于它们接触了连接的世界,因此进步伴随着对这些自动船的网络安全的新兴关注。The four key systems investigated in the guidelines are: 1) Shore Control Centre (SCC) 1 2) Communication System 3) Autonomous Ship Controller (ASC), comprising the Autonomous Engine Monitoring and Control System (AEMCS), Anchoring and Mooring System (AMS), Stability and Integrity System (SIS) and Cargo Handling System (CHS) and 4) Autonomous Navigation System (ANS), comprising the Navigation and Situation意识系统(NSAS),路线和速度优化计划系统(RSOPS),避免碰撞系统(CAS)以及天气监测和解释系统(WMIS)。SCC启用监视和控制,但也将远程黑客式途径引入船舶。ANS融合了传感器数据以独立指导船只,但也可能会被攻击者蒙蔽或喂养错误信息。通信链接将船连接到岸上,并且船之间很容易受到攻击,例如干扰,欺骗和拦截。集中式ASC函数类似于虚拟队长,并且在协助SCC方面起着关键作用,如果受到损害,可能会产生不利影响。自主船中系统的互连性形成了一个复杂的网络,其中各种组件无缝协作。为了完整性,这些准则包括与这些主要OT系统的子系统相关的网络风险和影响。然而,它们脆弱性的症结在于这种相互联系本身,而是他们接触更广泛的联系世界。当组件或系统受到损害时,通过复杂的网络级联反应,导致多方面的效果。另一方面,一个区域的中断可能会影响导航,通信和其他与之相互作用的系统。为了抵消这种脆弱性,必须将严格的网络安全措施整合到船舶系统的设计中,并实施(并重新审视)强大的应急计划以增强船的网络卫生和弹性。本文档中提出的指南旨在为利益相关者(船东,海事当局等)提供有效的保护指南通过强调与质量相关的特定操作技术(OT)风险(海上自主地表船)来增强其网络安全姿势。采用基于MITER框架的全面网络风险评估方法来评估风险的严重性。建议的缓解包括对所有系统的深入防御网络安全保护,逐个设计方法,人事培训和某些关键系统中的冗余。最后,还包括一个清单,以协助运营商进行常规的卫生评估。
2025 年 1 月 3 日 20:09:07 *美国陆军工程兵团关于最低和最高温度的生物参考是美国陆军工程兵团用来与测量温度进行比较的非官方指南。
2025 年 1 月 3 日 06:10:34 *美国陆军工程兵团关于最低和最高温度的生物参考是美国陆军工程兵团用来与测量温度进行比较的非官方指南。
可用的地图和目录阿拉巴马州地图移动(航空照片)路易斯安那州地图路易斯安那州地区造纸厂 - 所有路易斯安那州和附近造纸厂的位置,提供基本信息。概述(通往新奥尔良的巴吞鲁日) - 肖像河里程,终端,石化植物。河工业(墨西哥湾的巴吞鲁日(Baton Rouge))i -vii(空中照片)-sec。我巴吞鲁日-sec。ii plaquemine -sec。IH St. Gabriel -sec。 IV Donaldsonville -Sec。 v Gramercy -sec。 vi norco/ taft -sec。 vii新奥尔良德克萨斯州映射金三角(Beaumont/Orange/Arthur港)(航空照片)德克萨斯湾海岸(德克萨斯州弗里波特市到查尔斯湖,洛杉矶)休斯顿船舶渠道(航空照片)地图价格*地图*地图*映射*IH St. Gabriel -sec。IV Donaldsonville -Sec。 v Gramercy -sec。 vi norco/ taft -sec。 vii新奥尔良德克萨斯州映射金三角(Beaumont/Orange/Arthur港)(航空照片)德克萨斯湾海岸(德克萨斯州弗里波特市到查尔斯湖,洛杉矶)休斯顿船舶渠道(航空照片)地图价格*地图*地图*映射*IV Donaldsonville -Sec。v Gramercy -sec。vi norco/ taft -sec。vii新奥尔良德克萨斯州映射金三角(Beaumont/Orange/Arthur港)(航空照片)德克萨斯湾海岸(德克萨斯州弗里波特市到查尔斯湖,洛杉矶)休斯顿船舶渠道(航空照片)地图价格*地图*地图*映射*
1.1.2电池系统可以用作推进的主电源或其他功率来源。1.1.3其他类符号电池支架将分配给使用电池系统进行船舶推进的船只,并符合这些指南中指定的要求。这些指南中指定的要求也适用于与混合动力容器一样,将电池用作额外推进能力来源的配置。1.1.4当船舶上需要紧急电源时,同样的是独立于为推进和/或主要电源来源提供的电池源。此类电池的布置和容量应符合适用的IRS规则。1.1.5可能会注意到,随着电池技术的不断发展,IRS将根据使用的技术和风险评估报告对案件进行额外的安全要求(如果有的话,除了这些指南中反映的安全要求(如果有的话)。1.1.6除这些准则外,还应遵守法定当局的要求。1.2定义1.2.1以下定义和缩写是适用的IRS规则中给出的额外的:a)电池管理系统(BMS):一个控制,管理,检测或计算电池系统的电动和热功能并在电池和上层控制系统之间提供通信的电子系统。它通过保护电池在其安全操作区域外操作来监视电池状态。b)电源管理系统(PMS):提供对机上电源的监视和控制的系统
我们保留进行技术更改和更新的权利,恕不另行通知。此数据表,手册和其他产品信息以及这些文档中的插图和图纸中的特定值,绩效数据和其他信息完全是说明性的,并且需要进行持续的修订和修改。
本文将分析坡印廷矢量的能量通量与电气工程中的功率流之间的比较,其中功率由电压和电流定义。坡印廷能量通量矢量有其他替代方法,它们更符合电路理论方法,即能量流在电流导体中,而不是在其周围的绝缘层中。一种这样的基本公式仅由总电流密度和电压电位组成,但它需要另一种能量传输定理。斯莱皮安提出的另一种公式仍然符合坡印廷能量传输定理,但它需要增加交变磁矢量电位的功率。坡印廷矢量的替代方法可能更好地说明了电气工程中的能量流,但在它们的普遍性方面可以考虑两点。首先,由于它们由电位表示,因此它们是规范不变的,并且取决于电位的定义。其次,坡印廷矢量用于公式化电磁动量,而任何其他替代能量流矢量都不会。这两个注释在电气工程中并不重要,而这些替代方案可以作为描述功率流的良好替代方案。本文的主要目的是弥合能量通量的物理理论与电力工程方法之间的差异。这可以简化能量通量和坡印廷矢量在工程问题中的使用。
说明 ······································································································································· ··········································9
开始通知于2021年3月12日发出,CCECCJV进行了详细的设计,准备了其建筑环境管理计划(CEMP)的修订版1(CEMP),以及用于审查的方法声明草案,并将预备团队动员到现场(2021年12月);但是,由于包括Covid-19,供应链问题和俄罗斯 - 乌克兰战争在内的各种情况,建筑工程并未开始。工程区域在3月至2022年5月之间被清理,工程的材料和设备于2022年4月交付给Funafuti(以继续运送到Niutao,以及可从Nukulaeleae采购的设备)。然而,由于2022年5月在努库拉伊(Nukulaelea)的巨像接地,设备的转移没有发生。CCECCJV随后为反映上述问题和修订设计的作品提供了增加的成本。代替雇主协议就增加的成本,CCECCJV于2022年7月暂停了在Niutao船港上的所有作品,并于2022年10月(船坡上完成)复员并离开了该岛。
(1) 确认船体外壳的完整性,例如船体、舷侧船体、机翼、尾部和其他结构等。但仅适用于无需在干船坞或滑道上进行检验的船体水线以上部分。(2) 对船体外壳的结构进行冲水试验,例如船体、主翼等。需要风雨密性。(3) 对每个船体、舷侧船体、机翼、尾部和其他结构等连接处的区域进行近观检验。如验船师认为有必要,应进行无损检测。(4) 尽可能确认内部走廊和内部结构的完整性。(5) 确认座椅与地板的连接 (6) 确认方向、速度和姿态控制系统(机翼控制系统、水舵和空气舵)。如果验船师认为有必要,应进行操作试验。(7) 确认拖带设备的完整性(如果配备)。(8) 确认结构防火设施和布置的任何改动。(9) 确认所有通海开口以及连接船体的阀门、旋塞和紧固件。(9) 尽可能对螺旋桨叶片和轴系进行目视检查。如果验船师认为有必要,应进行无损检测。(10) 燃油舱外部检查 (11) 燃油系统、滑油系统、冷却系统、排气系统和液压系统的目视检查。(12) 燃油和滑油切断装置的操作试验。(13) 检查机械设备的工作状态,如验船师认为有必要,应进行有效性试验。(14) 检查电气设备的工作状态,如验船师认为有必要,应进行有效性试验。(15) 对驾驶舱内部进行一般目视检查。(16) 尽可能检查电缆。(17) 确认船体接地措施的有效性。
