电动飞机动力总成包含多个相互作用的子系统,从而使它们比传统的飞机推进系统在整合和控制方面更为复杂。电气化使飞机可以分布产生推力的风扇,使飞行控制系统可以利用可增强的可操作性,从而进一步提高控制复杂性。NASA概念飞机,亚音速船尾发动机(Susan)电动汽车,就是这样的车辆。Susan是一款系列/平行的部分混合电气单向运输飞机,它利用其电气化动力总成在与最先进的艺术品相比提供燃料燃烧和排放效益。实现这些好处需要适当设计的控制体系结构,以协调各种动力总成和飞行控制子系统。因此,Susan飞机的设计具有高水平的自动化,使其可以正确管理耦合子系统,并对失败和异常迅速做出反应。必须有效地执行此操作,必须开发和实施组件健康管理,故障检测,隔离和适应性以及持续优化的算法。本文描述了用于系统健康管理的某些算法的开发,该算法应用于Susan概念飞机的动力总成。
未来的飞机尺寸工具(FAST)是密歇根大学为早期概念飞机设计开发的基于MATLAB的开源软件。快速通过新颖的推进系统来促进传统和高级飞机配置的设计和分析,从而基于特定要求,所需的技术目标以及系统级别的目标来实现初步尺寸和性能评估。它已被用于NASA的电气化飞机推进和电气化动力总成飞行演示项目,以评估新型飞机概念,包括电气化商用货轮(notionility lockheed Martin LM-100J)和NASA的亚音速单单船尾发动机配置。本文介绍了快速的可视化软件包的开发,从而满足了整个尺寸过程中飞机设计的视觉表示的需求。集成的软件包提供了飞机外模线和推进架构的示意图的可视化。用户可以创建自定义的飞机几何形状或使用快速可用的预设。此外,随着飞机尺寸的过程的进行,可视化软件包会动态更新飞机的形状和尺寸,从而通过使设计师能够在早期设计阶段有效地可视化和完善其飞机概念来快速增强飞机。
船尾volmer方程通常用于描述荧光淬灭过程,但其应用面临着具有异构物理化学特征(尺寸和表面组成)(例如氧化石墨烯)的淬灭剂的挑战。考虑了一种数学方法,以计算氧化石墨烯氧化物氟化石系统中Gibbs自由能的变化,考虑到淬灭剂浓度(0.12至250 µg ML -1)的影响以及荧光团对非荧光复合物形成的净电荷。可以发现,在与带电的荧光团相互作用时,增加氧化石墨烯的浓度有利于非荧光复合物的形成,从0.48 µg ml -1开始,甲基蓝的荧光素的31.25 µg ml -1,用于荧光素钠的含量,含量含量为液体,从而导致液化液化。氧化石墨烯和萘之间的相互作用导致动态荧光猝灭。可以在环境和生物医学应用的纳米技术中探索此评估。
曲唑酮(TZD)是一种用于治疗主要抑郁症和睡眠障碍的抗抑郁药。升高的曲唑酮与中枢神经系统抑郁症有关,这表现为恶心,嗜睡,混乱,眩晕,疲惫等。要开发具有最小不良影响的临床活性药物化合物,必须全面了解该药物对DNA的作用机制。因此,我们利用各种光谱和计算技术研究了曲唑酮与DNA之间的相互作用方式。使用UV - VIS滴定的研究表明,DNA和曲唑酮具有有效的相互作用。通过稳态荧光研究,Lehrer方程计算得出的船尾伏默常数(K SV)的大小为5.84×10 6 m-1。uv - Vis吸收,DNA熔化,染料位移和圆形二分法研究表明,曲唑酮与小凹槽中的DNA结合。分子对接和分子动力学模拟表明TZD-DNA系统是稳定的,并且结合模式较小。此外,离子强度研究表明,DNA和曲唑酮没有实质性的静电结合相互作用。
作者的完整列表:Zhu,Weigang;天津大学化学系李,盖珀;西北大学,化学; Mukherjee,Subhrangsu;纳塔利亚国家标准和技术材料测量实验室大战; Slac,Pulse Institute; Slac Jones,Leighton;西北大学,艾略特化学甘恩;国家标准与技术研究所,物质测量实验室Kline,R。Joseph;国家标准与技术研究所,物质测量实验室Herzing,Andrew;詹娜(Jenna)SMSD Logsdon国家标准与技术研究院;西北大学,化学系弗拉格,卢卡斯;夏洛特国家标准和技术材料科学与工程实验室船尾;西北大学,瑞安(Ryan)的化学Young;西北大学,凯文化学系Kohlstedt;西北大学,乔治的化学Schatz;西北大学,院长化学DeLongchamp;国家标准技术研究所,聚合物Wasielewski,迈克尔;西北大学,费迪南德的化学系;西北大学,安东尼奥的化学Facchetti;西北大学,化学系和材料研究中心标记,托宾;西北大学,化学
太空运输系统Haer No.TX-116第337页V.固体火箭助推/可重复使用的固体火箭电机简介Twin Solid Rocket Booster(SRB)(SRBS),设计为STS的主要推进元件,在发射的前两分钟内为航天飞机提供了80%的升空推力。他们燃烧了超过2,200,000磅的推进剂,并产生了3600万马力。1487每个SRB助推器都由电动机和非运动段组成。电动机段(称为实心火箭电机(SRM)),后来更名为“可重复使用的固体火箭电机”(RSRM),其中包含燃料来为SRB供电。1488 SRMS/RSRMS是有史以来最大,唯一的固体螺旋桨火箭电机,也是第一个用于恢复和重复使用的设计。主要的非运动段包括鼻盖,frustum以及前进和后裙。这些结构成分包含电子设备,可在升空,上升和ET/SRB分离期间引导SRB,并放置了降落伞,这使可重复使用的助推器的下降减慢了从航天器的抛弃后进入大西洋。从历史上看,SRM/RSRM开发遵循与非运动SRB组件分开的路径。在整个SSP中,犹他州Promontory的Thiokol是SRM/RSRM的唯一制造商和主要承包商。超过400个供应商,位于37个州和加拿大,提供了金属组件,密封,隔热材料,面料,油漆和粘合剂。此外,六家公司还提供了构成RSRM推进剂的主要成分。1489 Thiokol向NASA提供了推进剂的前进电机盒细分,并安装了点火器/安全和手臂(S&A)设备;两个推进剂的中心运动案例段;加载的船尾电动机箱段,安装了喷嘴;表壳加强圈;以及安装了遣散系统的船尾出口锥体组件。其中包括犹他州锡达拉皮兹(Cedar Rapids)的美国太平洋(AMPAC)(高氯酸铵);德克萨斯州自由港的陶氏化学(环氧树脂);德克萨斯州罗克代尔的铝业(铝粉);伊利诺伊州内珀维尔的Toyal America(球形铝制粉末);位于肯塔基州路易斯维尔的美国合成橡胶公司(ASRC)(聚丁二烯 - 丙烯酸 - 丙烯酸丙烯腈Terpolymer [PBAN]);宾夕法尼亚州伊斯顿的元素色素(氧化铁)。对于最终的飞行电动机,三菱阿根廷铸币厂取代了Alcoa提供的铝粉,而高氯酸铵则由HCL-Olin在Becancour,Becancour,Quebec,Quebec,加拿大,加拿大和纽约州尼亚加拉瀑布提供。
大多数船舶使用双推进装置驱动双螺旋桨来移动船舶,以实现高效的海上运输操作。但是,双螺旋桨无法实现可靠的定位控制。SEACON 的推进装置设计用于最高效的定位控制。SEACON 推进装置有三台 Voight-Schneider 推进发动机,两台位于船尾,一台位于船头。Voight-Schneider 发动机通过船体安装,船体上有一个旋转的圆形钢板,钢板上有五个类似直升机的叶片,垂直于旋转钢板向下指向。然后旋转类似直升机的叶片以在 360 度的任意方向上产生力。因此,三个电机可以迫使船舶向任何所需的方向移动,包括在运输过程中。三个发动机通过导航系统连接在一起,使用操纵杆,您可以将船移向任何方向,包括必要时的侧向移动。如果需要,船也可以旋转一圈。这是美国第一艘使用 Voight-Schneider 发动机建造的船。这些发动机主要用于欧洲的拖船推进。推进系统使我们能够在恶劣的海况条件下将施工平台固定在半径小于 50 英尺的范围内。在平静的海况条件下,我们可以将位置保持在几英尺以内。
标题:船上的消防安全 - 乘员干预措施:Brandskydddddddddddddddddddddddddddddddddddddddddddddppåubåtar-作者负责报告中的内容5379-se语言 /språk:英语 /恩格尔斯卡(Engerska)的编号 / antal sidor:64插图 /插图:Sofia Bohlin和Anna Olofsson关键字:潜艇,手动干预,A26,消防,火灾安全,调查,调查,访谈,乘员,船员,无人驾驶AftSökord:Ub(Mank) ättning,vattendimma,obemannad akter摘要这项工作调查了机组人员对董事会潜艇手动干预的意见,并计划了新潜艇A26上的新解决方案。计划的解决方案包括无人船尾和安装细水雾代替哈龙1301作为灭火系统。使用文献、调查和访谈来收集信息。机组人员的日常活动和以前的火灾事件已经确定。调查显示,很多船员在船上并未经历过火灾,而且很多情况下他们开始人工干预的时间都晚于规定时间。采访和调查显示,机组人员对计划中的变更持怀疑态度,但这些信息可能会改变这种状况。这项工作为瑞典下一代潜艇 A26 的设计和建造做出了贡献。 © 版权所有:消防工程与风险管理,隆德理工大学,隆德大学,隆德 2012
www.applied-statistics.de/lst.html)。13使用SPM12(http://wwwww.fil.ion.ucl.ucl.ac.ac.ac.ac.uk/spm/software/spm12)将均匀的DeNOCH,T2- TSE和易感性加权图像进行了核心,并使用了自由粉的掩蔽层用于米苏米布尔奶油粉。通过最近的邻居沿着18个环网的网络连接所得的3D数据集。使用MATLAB中的“ bwlabel”函数表征了各个对象,并提取主轴。网络被过滤,以排除4个大/小轴长度比为4的对象,以消除易感性的非船尾点状焦点。对于所有受试者,WM PVSS均由2个评估者手动标记在T2-TSE图像上(I.C.G.和A.A.-A。)在Osirix成像软件上,版本9.0.2(http://www.osirix-viewer.com)。为每个标记的PV鉴定了一个单独的ROI。PVSS通过ROI的短轴在直径上标记(排除直径为0.5mm)。灰质和后窝PVS被排除在外,因为这些区域容易在7t时进行工件。评估了分子可靠性,比较了每个审阅者每个部分标记的总PVSS。血管和PVS口罩被覆盖,以量化PVSS和分段静脉相对于检测到的PVS的总数。在MS和HC患者的评估者之间平均PVSS和静脉PVS的总数。通过将检测到的静脉空间数量除以周围空间总数的静脉空间数量来计算每个受试者的百分比。非参数
距离第一艘 X-Yachts 下水已经过去了 32 年,而对于我们来说,2011 年是特别特殊的一年,因为它预示着我们第四代 Xperformance 系列巡航竞赛艇的首次推出(在过去三年中,我们的 Xcruising 系列取得了巨大成功,而我们的 Xracing 单一设计也已非常成熟)。新的 Xp 44 和 Xp 38 设计清楚地表明,它们源自多年前我们第一艘 X-79 的相同 DNA,即充满激情地努力打造舒适的巡航艇和卓越性能的最佳组合。需要满足许多水手相互冲突的需求——即让家人在享受巡航的同时感到安全和舒适的重要性,以及为我们的热情游艇爱好者提供真正迷人的航海体验的愿望,无论是在蓝色大海航行还是短途比赛中——这就是激励我们团队的挑战,就像当时一样。三十二年前,这并不那么难——我们引入了一种受小艇启发的船体形状,具有相对尖锐的船头、适中的横梁、强大而宽阔的船尾以及轻型夹层结构的主要特点,没有太多沉重的巡航功能。早期的 X-Yachts 赢得了大量著名比赛,包括世界上最大的 Sjaelland Rundt(有 2,200 艘游艇参赛)、撒丁岛杯和美国 S.O.R.C.系列。X-Yachts 还赢得了官方 O.R.C.3/4 吨级和一吨级游艇世界锦标赛,总共不下九次,并在著名的海军上将杯中获得亚军。