8. 21 USC § 955a[h] (Supp. V 1981)。至少有一家法院暗示,该法规可能通过将管辖权扩大到领土范围之外而超越了国际法的范围。在美国诉霍华德-阿里亚斯案中,679 F.2d 363 (4th Cir. 1982),被告的船在弗吉尼亚海岸 60 英里处失去动力,他们在那里登上了一艘意大利船只。海岸警卫队搜查了这艘失去动力的船只,发现了大量大麻。辩方辩称,需要证明存在关联,否则,根据第 955a 条行使管辖权将违反国际法。法院承认第 955a 条与国际法之间存在潜在冲突。在霍华德-阿里亚斯案中,法院没有像美国诉马里诺-加西亚案(679 F.2d 1373 (11th Cir. 1982))那样根据国际法为其裁决辩护,而是得出结论认为,虽然国际法是美国法律的一部分,但当它与联邦法规相冲突时,必须让步。另见哈瓦那的 Pacquette,
人工智能 (AI) 被誉为确保自主船舶安全的重要贡献者。然而,利用人工智能技术来增强安全性可能会存在问题。例如,人工智能只能在经过训练或以其他方式编程来处理的情况下表现良好。因此,量化此类技术的真实性能非常困难。这就提出了一个问题,即这些技术是否可以应用于需要批准和安全认证的大型船舶。当作为远程控制中心的一个元素引入时,问题变得更加复杂。本文概述了人工智能与自主船舶最相关的应用,以及它们在批准方面的局限性。研究发现,通过限制此类系统的操作范围以及利用可解释和可信赖的人工智能的最新发展,可以简化审批流程。如果利用得当,人工智能模型可以自我意识到自己的局限性,并只应用于低风险情况,从而减少人类操作员的工作量。在高风险情况下,例如人工智能模型不确定性高或导航情况复杂,应及时有效地移交给人类操作员。这样,基于人工智能的系统不需要能够处理所有可能的情况,而是能够识别其局限性,并提醒人类操作员注意他们无法以可接受的风险水平处理的情况。
传感器硬件、数据积累/传输、高级分析和人工智能等技术的最新进展使得船舶健康理解的新方法成为可能,如果有效实施,将有助于提高系统的安全性和可靠性。ABS 认识到政府船舶的运营商需要改进生命周期管理方法,以实现高水平的运营可用性和准备度,同时降低总拥有成本。本指南通过建立本文注释所涵盖的 CBP 登记和维持框架,提供了一种基于条件的调查方法。ABS CBP 专注于利用数据,使调查变得知情、有针对性和具有预测性,并通过与政府运营和维护工作流程保持一致的持续数据驱动流程提供支持。实施后,CBP 将利用此类数据驱动功能和见解来支持政府技术机构的在职决策过程。
2.2.12 如果 LG 运输船的薄膜型 LNG 货舱能够承受 25kPa 以上、70kPa 以下的蒸气压力,则应在船舶附加标志中加注识别标志 highPRESS(pressure),并在括号中标明最大允许蒸气压力(kPa),例如 highPRESS(50)。为授予船舶 highPRESS(pressure) 标志,应根据 4.1 提交文件,确认满足第 IV 部分“货物围护”第 24.1.4 和 24.4 条、第 VI 部分“系统和管道”第 3.16.6 条和第 VIII 部分“仪器和自动化系统”第 4.1 条规定的要求。
摘要:挪威国家科技大学 (NTNU) 设立了一项为期 8 年的研究项目,研究人类与无人驾驶自主船舶之间的相互作用(除其他事项外)。当船舶操作员远程位于岸上的岸上控制中心时,人将变得更加重要。本概念论文将仔细研究操作员监控多艘船舶的远程决策。当意外突然发生时,界面设计如何帮助他们快速进入循环?在本文中,我建议保留控制船舶的 AI 专家系统的副本,并在控制中心更新并并行运行,以保持操作员在短暂的通信故障期间的态势感知。此外,设计一个“快速进入循环显示”,它将在警报情况下自动出现,让操作员及时获得简单易懂的信息。我还要强调自动化透明度概念的重要性。
如果本指南的应用不适当,或本船级社认为本指南中未规定的特殊方法和程序至少与本指南的规定等效,则假定其适用于本指南的规定。在这种情况下,为了验证传热分析至少与本指南的标准等效,应向本船级社提交相关信息,并与本船级社协商评估方法。从初始设计阶段开始,应充分讨论使用不同方法的目的。
摘要:替代能源供应解决方案的实施需要当地社区的广泛参与。因此,智能能源解决方案主要在当地范围内进行研究,从而形成综合社区能源系统 (ICES)。在此框架内,分布式发电可以得到最佳利用,并通过存储和需求响应技术将其与当地负载相匹配。在本研究中,分析了位于丹麦中型岛屿萨姆索岛的 Ballen 码头的船舶需求灵活性,以改善当地电网的运行。为此,根据进行的需求分析,制定了适合码头和水手的电价。利用混合整数线性规划,提出了船舶和电池储能系统 (BESS) 的最佳调度。研究了码头的电网灵活运行,为期三个代表性星期——旅游旺季、夏末和秋末——结合高/低负荷和光伏 (PV) 发电。船舶需求响应的几个好处已被确认,包括为码头和船员节省成本,以及大幅提高负载率。此外,所提出的算法在夏季增加了电池利用率,提高了码头的成本效益。船舶灵活性和 BESS 的合作改善了码头的电网运行,为双方带来了利润。考虑到可再生能源发电能力可能增加(以光伏装置、风力涡轮机或波浪能的形式),未来码头的需求灵活性可能成为当地能源系统的重要组成部分。
1.1 适用范围。 1.1.1 《散装运输液化气体船舶入级与建造规范》1 适用于专门建造或改建的船舶,无论其总吨位和动力装置输出功率如何,用于运输散装液化气体(在 37.8°C 温度下蒸气压超过 280 kPa 绝对值)以及技术要求表(附录 1)所列的其他物质。散装运输液化气体的船舶 2 完全符合《海船设备规范》、《海船货物装卸设备规范》和《海船载重线规范》的要求。《海船入级与建造规范》3 在《海船规范》文本规定的范围内适用于 LG 承运人。 1.2 定义和解释。 1.2.1 LG 规范中使用了以下定义。可燃上限是指空气中碳氢化合物气体的浓度,高于该浓度时,没有足够的空气支持和传播燃烧。二级屏障是货物围护系统的防液体外部元件,旨在暂时遏制任何可能通过主屏障泄漏的液体货物,并防止船舶结构温度降低到不安全的水平。气体安全处所是除气体危险处所以外的处所。液化气体运输船是设计用于运载液化气体的船舶。
海上行业对温室气体的数量,尤其是IMO允许由船只发射的CO 2面临越来越多的限制。碳捕获技术有望大大减少船舶上的CO 2排放,并且通过从废气中填充CO 2,与LNG驱动的容器兼容。这项研究集中在一个问题上:“一旦将CO 2捕获到船上,该如何处理?”。进行了三倍的可行性研究,以证明从与技术,经济和排放相关的水平上,基于船舶的碳捕获供应链的可行性。供应链由捕获,运输和寿命末期组成。对技术,经济和排放相关的可行性进行了评估。诸如碳捕获系统的运输距离,板载CO 2的存储容量和资本支出(CAPEX)以及诸如碳税和利用收入之类的外部条件,事实证明是最有影响力的元素,这些要素是在3到5年内的投资捕获的最大范围,并在3到5年内捕获了碳的投资时间,并在3到5年内保持了重新范围,并触发了该元素,并在30到5年内及时触发了该元素。分别为40%和70%。诸如碳捕获系统的运输距离,板载CO 2的存储容量和资本支出(CAPEX)以及诸如碳税和利用收入之类的外部条件,事实证明是最有影响力的元素,这些要素是在3到5年内的投资捕获的最大范围,并在3到5年内捕获了碳的投资时间,并在3到5年内保持了重新范围,并触发了该元素,并在30到5年内及时触发了该元素。分别为40%和70%。诸如碳捕获系统的运输距离,板载CO 2的存储容量和资本支出(CAPEX)以及诸如碳税和利用收入之类的外部条件,事实证明是最有影响力的元素,这些要素是在3到5年内的投资捕获的最大范围,并在3到5年内捕获了碳的投资时间,并在3到5年内保持了重新范围,并触发了该元素,并在30到5年内及时触发了该元素。分别为40%和70%。
俄罗斯海事船级社远洋船舶入级与建造规则已按照既定的批准程序获得批准,并于 2019 年 1 月 1 日生效。本规则的当前版本基于 2018 年版本,并考虑了发布前立即制定的修订。已考虑国际船级社协会 (IACS) 的统一要求、解释和建议以及国际海事组织 (IMO) 的相关决议。本规则分为以下部分发布:第一部分“入级”;第二部分“船体”;第三部分“设备、布置和舾装”;第四部分“稳性”;第五部分“分舱”;第六部分“防火”;第七部分“机械装置”;第八部分“系统和管道”;第九部分“机械”;第十部分“锅炉、热交换器和压力容器”;第十一部分“电气设备”;第十二部分“制冷装置”;第十三部分“材料”;第十四部分“焊接”;第十五部分“自动化”;第十六部分“纤维增强塑料船舶的结构和强度”;第十七部分“船舶结构和操作特性附加标志中的区别标记和描述性符号”;第十八部分“散货船和油船的共同结构规则”。本部分的文本与 IACS 共同结构规则的文本相同;第十九部分“集装箱船和主要用于运载集装箱货物的船舶结构的附加要求”。本部分文本与 IACS UR S11A《集装箱船总纵强度标准》(2015 年 6 月)和 S34《集装箱船有限元分析强度评估载荷工况功能要求》(2015 年 5 月)相同。第 I 至 XVII 部分以俄文和英文电子版发布。如果俄文和英文版本之间存在差异,以俄文版本为准。第 XVIII 至 XIX 部分仅以英文电子版发布。