调制器在每位能耗方面极其节能 [5],并能克服基于等离子体色散效应的电流调制器在速度、噪声和功耗方面的限制 [6]。这依赖于在小电极分离下可达到的高电场值,能够在电荷的排斥/去除方面引起更有效的折射率变化。事实上,电场会沿共轭聚合物链引起电子的离域,因此不需要像等离子体色散效应那样进行载流子传输。在绝缘体上硅 (SOI) 技术中使用有机材料的能力引起了各个科学领域的极大兴趣,包括但不限于高速调制器 [7]、可调谐光学滤波器 [8]、高精度计量 [9] 和频率梳 [10]。然而,非线性光学材料在SOI技术平台的混合集成仍是当前研究的重点,线性和二次电光效应是这一进展的主要内容,需要进一步研究。
调制器在每位能耗方面极其节能 [5],并能克服基于等离子体色散效应的电流调制器在速度、噪声和功耗方面的限制 [6]。这依赖于在小电极分离下可达到的高电场值,能够在电荷的排斥/去除方面引起更有效的折射率变化。事实上,电场会沿共轭聚合物链引起电子的离域,因此不需要像等离子体色散效应那样进行载流子传输。在绝缘体上硅 (SOI) 技术中使用有机材料的能力引起了各个科学领域的极大兴趣,包括但不限于高速调制器 [7]、可调光学滤波器 [8]、高精度计量 [9] 和频率梳 [10]。然而,非线性光学材料在SOI技术平台的混合集成仍是当前研究的重点,线性和二次电光效应是这一进展的主要内容,需要进一步研究。
摘要 —TDFA 波段(2 µ m 波段)已被视为下一代光通信和计算的有前途的光学窗口。吸收调制是基本的可重构操作之一,对于大规模光子集成电路至关重要。然而,在 TDFA 波段探索吸收调制的努力很少。在这项工作中,基于绝缘体上硅 (SOI) 平台设计和制造了用于 TDFA 波段波长的可变光衰减器 (VOA)。通过将 200 µ m 的短 PIN 结长度嵌入波导,制造的 VOA 在 2.2 V 时表现出 40.49 dB 的高调制深度,并具有由等离子体色散效应引起的快速响应时间 (10 ns)。结合法布里-珀罗腔效应和硅的等离子体色散效应,衰减器可实现超过 50 dB 的最大衰减。这些结果促进了2μm波段硅光子集成的发展,并有望促进光子衰减器在串扰抑制、光调制和光通道均衡方面的应用。
连续变量 (CV) 类型的多模量子光学是许多量子应用的核心,包括量子通信 [1、2]、量子计量 [3] 以及通过团簇态 [5-7] 进行的量子计算 [4]。处理多模光学系统的核心步骤是识别所谓的超模 [8-10]。这些是原始模式的相干叠加,使描述系统动力学的方程对角化,并允许将多模 CV 纠缠态重写为独立压缩态的集合 [11]。超模知识对于优化对状态的非经典信息的检测[8,9,12]、在光频率梳[13-15]或多模空间系统[16]中生成和利用 CV 团簇态以及设计复杂的多模量子态[17,18]都是必需的。在实验中,由于超模在统计上是独立的,因此可以用单个零差探测器测量,从而大大减少实验开销[15]。由于其用途广泛,因此一种允许检索超模的通用策略对于多模量子光学及其应用至关重要。本理论工作的目的是提供这样一种强大而通用的工具。更具体地说,多模光量子态通常是通过二次哈密顿量描述的非线性相互作用产生的[2]。对角化系统方程的变换必须是辛变换,即遵守交换规则。标准的辛对角化方法,如 Block-Messiah 分解 (BMD) [19],适用于单程相互作用 [20-22],但不适用于基于腔的系统,因为在基于腔的系统中使用它们需要对所涉及模式的线性色散和非线性相互作用做出先验假设 [10, 23]。这种限制使传统的辛方法不适用于处理广泛的相关实验情况,包括利用三阶非线性相互作用的共振系统中的多模特征。例如,硅和氮化硅等集成量子光子学的重要平台就是这种情况 [24, 25]。在本文中,我们提供了一种广义策略,它扩展了标准辛方法,并允许在没有任何假设或限制的情况下检索任何二次哈密顿量的超模结构。我们在此考虑一个通用的阈值以下谐振系统,该系统可以呈现线性和非线性色散效应。我们的方法适用于多种场景。这些包括低维系统,例如失谐设备中的单模或双模压缩[ 26 , 27 ]或光机械腔中的单模或双模压缩[ 28 ],以及高度多模状态,例如通过硅光子学集成系统中的四波混频产生的状态[ 24 ]。最终,我们注意到,这里为共振系统开发的工具同样可以用于单程配置中的空间传播分析[16, 22]。