本文介绍的所有陈述,信息和数据都被认为是准确和可靠的,但不应作为保证,明示保证或对特定目的或使用的适销性或适用性的保证或隐含的保证,在此,所有这些保证或适用于特定目的或适用性,或者所有这些都被视为silberline假设的责任,并指定了您的法律责任,并指定了silberline的代表或暗示。单个产品信息和材料安全数据表可应要求提供Silberline,因此必须引用,因为与使用这些产品有关的潜在严重危害。可以通过您当地的Silberline代表获得成绩选择的帮助。有关产品配方和帮助,请联系Silberline的技术服务/产品应用部。Silberline不保证,保证或暗示保证适销性或适用于特定目的或使用此处所指的产品的混合物,无论是否根据Silberline制定的指南,所有这些都不根据Silberline执行的所有成分,所有这些都不根据特此否决。
研究了由生物防治剂产生的抗真菌剂绿青霉素与不产生绿青霉素的微生物的生物转化。结果表明,一些环境非目标微生物能够还原已知的植物毒素绿青霉素及其 3-差向异构体中的绿青霉素。因此,这种还原在某些情况下通过解毒机制发生,在植物病害的生物防治中可能对植物造成灾难性的影响。然而,发酵/生物转化工艺可能是制备这种植物毒素的有效方法。
1个神经退行性疾病实验室中的干细胞疗法,Centro deInvestivaciónPrincipe Felipe(CIPF),西班牙瓦伦西亚46012; aartero@cipf.es(A.A.-C。); frodriguez@cipf.es(F.J.R.-J.); ecmente@cipf.es(E.C。)2 Wellcome Sanger Institute,Wellcome Genome Campus,Hinxton,Cambridge CB10 1SA,英国; kl16@sanger.ac.uk(k.l.); ab42@sanger.ac.uk(A.B。)3遗传学和基因组学系,IIS-FundaciónJiménezDíAz(IIS-FJD,UAM),西班牙马德里28040; aavila@quironsalud.es(a.á.-f。); mcorton@quironsalud.es(M.C。); cayuso@fjd.es(c.a.)4稀有疾病生物医学网络研究中心(Ciberer),ISCIII,28040,西班牙马德里5号代谢研究实验室,惠康信托MRC代谢学院,剑桥大学,阿德布鲁克大学,阿德布鲁克医院,剑桥CB2 CB2 CB2 0QQ,英国; ajv22@medschl.cam.ac.uk 6捷克科学学院神经代理部实验医学研究所,捷克共和国14220布拉格; pavla.jendelova@iem.cas.cz 7国家干细胞库 - 瓦伦西亚节点,蛋白质组学,基因分型和细胞系平台,PRB3,ISCIII,ISCIII,研究中心Principe Felipe,C/ Eduardo PrimoyúFera3,46012 Valencia,Spain * sassceence:Ceceg@serceg@cipf。电话。: +34-963-289-680(Ext。1102)
摘要:微生物色素通常比其他天然色素优选,因为它们易于扩展,快速的颜料提取方法和简单的培养过程。因此,本文的目的是使用适当的微生物和分析标准程序隔离和鉴定从尼日利亚拉各斯州阿利莫索地方政府地区农场土壤中产生棒状细菌的黄色色素。鉴定分离株显示出革兰氏阳性黄色色素产生棒状细菌为iodinum。使用0.4 OD(600nm)的5%接种物(600nm),在pH7(120rpm)下,在pH7(35°C)的营养肉汤中实现了碘芽孢杆菌生产的最佳条件。在这些最佳条件下,生物质的1.2g/l总共产生了0.225g/l的粗色色素。黄色颜料在455nm时显示出最大的吸收。对粗色色素的GC-MS分析揭示了主要化合物,例如甲氧胺。顺式-10-甲基酸,甲基酯;乙酸,2- [BIS(甲基硫硫代)甲基] -1-苯基氢氮杂和4-甲基-2-三甲基甲硅烷基 - 乙烯酮
摘要:由于层间间层之间的牢固键合,很难通过从整体WO 3进行直接去角质来获得超薄二维(2D)三维(2D)钨(WO 3)纳米片。在此,使用Sonication和温度合成了3个具有可控尺寸的纳米片和可控尺寸的纳米片。由于层间距离的插相和膨胀,可以成功去除插入的WO 3,以在Sonication下在N-甲基-2-吡咯酮中产生大量的单个2D WO 3纳米片。剥落的超薄量3纳米片在电化装置中表现出比WO 3粉末和无插入的exfoliated Wo 3表现出更好的电致造性能。尤其是,准备好的小WO 3纳米片表现出出色的电致色谱性能,在700 nm时在700 nm时具有41.78%的大型光学调制,而漂白的快速切换行为时间为9.2 s,颜色为10.5 s。此外,在1000个周期之后,小的WO 3纳米片仍然保持其初始性能的86%。
摘要:微生物色素具有许多具有出色特征的结构和功能,例如可生物降解,无毒且对生态友好,构成了重要的颜料来源。工业生产提出了限制大规模商业化的生产成本的瓶颈。但是,由于其健康优势,微生物色素正在逐渐流行。使用行业副产品开发代谢工程和降低生物处理的成本为所有生产阶段的成本和质量提高开辟了可能性。因此,我们正在解决与微生物色素有关的几个点,包括发现的主要类别和结构,使用的优势,不同工业领域的生物技术应用,它们的特征及其对环境和社会的影响。
染色体碎裂、染色体合成和染色体复合等现象被称为染色体再生,它们构成了新型的复杂重排,包括许多仅位于少数染色体区域的基因组改变。近十年来,这些现象的发现改变了我们对染色体异常的形成及其病因的认识。尽管这些新的灾难性机制各有特点,但它们通常发生在单个细胞周期内,并且它们的出现与基因组不稳定性密切相关。人们已经提出了各种能够产生染色体再生的非排他性外源性或细胞机制。然而,最近的实验数据揭示了两个主要过程,这两个过程在染色体有丝分裂分离出现缺陷后,可产生一系列细胞事件,从而导致染色体再生。这些机制包括整合分离染色体物质的微核的形成,以及由于端粒融合而导致染色体物质周围出现染色质桥。在这两种情况下,受损染色体物质的碎裂、修复和传递的细胞和分子机制与染色体再生相关的复杂染色体重排的特征一致。在本综述中,我们介绍了每种类型的染色体再生,并描述了实验模型,这些模型可用于验证染色体再生事件的存在,并更好地了解其形成和传递的细胞机制,以及它们对基因组稳定性和可塑性的影响。21
染料用于各种行业,包括纺织品,化妆品,药品和食物。消费者越来越多地寻求环保和可持续的产品,这推动了对可再生生物来源的天然染料的需求。生物色,这些生物色源自植物,水果,蔬菜和微生物,在广泛的应用中,它作为安全的,无毒的替代品的流行度[7]。2.1生物色的生物色的来源可以来自广泛的生物材料,包括植物,水果,蔬菜,花,昆虫和微生物。每个源提供独特的颜色化合物,可以提取并用作天然染料。生物颜色来源的常见例子包括[18]。基于植物的染料:诸如靛蓝,姜黄,疯子和指甲花等植物中含有天然色素,可提取并用于染色纺织品和其他材料。水果和蔬菜染料:浆果,甜菜,洋葱和菠菜等水果和蔬菜含有充满活力的色素,可以在食物,化妆品和纺织品中提取和用作天然着色剂。微生物染料:某些细菌,真菌和藻类产生具有多种颜色的颜料,例如红色,黄色,绿色和蓝色。这些微生物颜料可以被培养和收获以用于染色。