白癜风是一种自身免疫性疾病,当人体攻击自己的黑色素细胞(即赋予皮肤、头发和身体其他部位颜色的细胞)时,会导致皮肤褪色,从而导致色素脱失(皮肤颜色/色素损失)。当白癜风处于活跃期时,有些人还会在色素脱失部位感到剧烈瘙痒。一些白癜风患者还会出现斑块状色素脱失,影响头皮或身体的毛发。目前尚不清楚哪些具体情况会触发免疫系统攻击皮肤中的黑色素细胞,但研究表明遗传和环境因素在其中发挥了作用。白癜风有时会在家族中遗传,但遗传模式很复杂,因为涉及许多致病因素。患有白癜风的人可能更容易患上其他自身免疫性疾病,如甲状腺功能减退症、糖尿病、恶性贫血和斑秃。白癜风是一种常见疾病,影响全球 0.5% 至 1% 的人口。白癜风的平均发病年龄为二十五六岁,但任何年龄都有可能发病。1
头足类动物在无脊椎动物中以认知能力、适应性伪装、新颖结构和通过 RNA 编辑重新编码蛋白质的倾向而引人注目。然而,由于缺乏遗传上可处理的头足类模型,这些创新背后的机制尚不清楚。CRISPR-Cas9 等基因组编辑工具允许在不同物种中进行定向突变,以更好地将基因和功能联系起来。一种新兴的头足类模型 Euprymna berryi 产生大量胚胎,这些胚胎可以在其整个生命周期中轻松饲养,并且具有已测序的基因组。作为原理证明,我们在 E. berryi 中使用 CRISPR-Cas9 来靶向色氨酸 2,3 双加氧酶 (TDO) 基因,色氨酸 2,3 双加氧酶 (TDO) 是形成色素色素所需的酶,色素色素是头足类动物眼睛和色素细胞中的色素。将靶向 tdo 的 CRISPR-Cas9 核糖核蛋白注射到早期胚胎中,然后培养至成年。出乎意料的是,注射的标本是有色的,尽管通过对注射动物 (G0s) 进行测序验证了目标位点的插入缺失。经过多代繁殖的 TDO 纯合敲除系也有色。令人惊讶的是,E. berryi 中也存在编码吲哚胺 2,3 双加氧酶 (IDO) 的基因,该酶在脊椎动物中催化与 TDO 相同的反应。使用 CRISPR-Cas9 对 tdo 和 ido 进行双敲除产生了白化表型。我们展示了这些白化病在双光子显微镜对大脑中的 Ca 2+ 信号进行体内成像中的实用性。这些数据表明,制造基因敲除头足类动物系的可行性,可用于对这些行为复杂的生物体的神经活动进行实时成像。
疾病模型和药理学营救对常染色体显性视网膜炎1与Rho拷贝数变化相关的色素2 3 4 Sangeetha Kandoi 1,2,Cassandra Martinez 1,2 1,2,Kevin Xu Chen 2,Miika Mehine 3,Miika Mehine 3,Brian C. Ophthalmology, University of California San Francisco, CA, USA 8 2 Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, 9 University of California San Francisco, CA, USA 10 3 Blueprint Genetics, Helsinki, Finland 11 4 Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy 12 Shriver National Institute of Child Health and Human Development, National Institutes of 13 Health,美国医学博士贝塞斯达。14 15 16通讯作者:Deepak A. Lamba。35 Medical Center Way,IRM,旧金山17 CA 94143。电子邮件:deepak.lamba@ucsf.edu 18 19 20 21 22资金信息:NEI R01 EY032197和CIRM DISC0-14449(D.A.L),U24 23 EY 029891(D.A.L和J.L.L和J.L.D) 25核心NIH/NEI P30 EY002162,以及从研究中获得26盲人的无限制赠款,纽约,纽约,27 28 29商业关系披露:30 Sangeetha Kandoi -31 Cassandra Martinez -Cassandra Martinez-无32 Kevin Xu Chen -33 Kevin Xu Chen -None 33 Miika Mehine -33 Miika Mehine -34 Brian C.无37 38 39 40 41 42 43 44 45 46
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2022 年 11 月 16 日发布了此版本。;https://doi.org/10.1101/2022.11.16.516784 doi:bioRxiv 预印本
开发有效治疗神经退行性疾病的一个关键局限性是缺乏准确模仿人类疾病的复杂物理学的模型。人类会随着年龄的增长而积累的神经元内神经元的色素神经素,从而合成儿茶酚胺。神经元达到最高神经元素水平的神经元在parkinson,阿尔茨海默氏症和显然健康的衰老个体中优先退化。然而,在当前动物模型中未考虑这种大脑色素,因为啮齿动物等常见的实验室物种不会产生神经念珠菌。在这里,我们生成一种被称为TGNM的组织特异性的转基因小鼠,该小鼠模仿了基于组成型儿茶酚胺特异性表达人类糖果蛋白 - 生物糖蛋白酶蛋白酶酶的蛋白酶酶的表达,从而模仿了cantecholamineragramagic neuromelanin的人类依赖性脑部范围的分布。我们表明,与渐进性人类神经元素色素沉着平行,这些动物表现出与年龄相关的神经元功能障碍和变性,影响了许多脑回路和身体组织,与运动和非运动和非运动型呈现有关,让人想起早期神经变性阶段。该模型可以帮助探索大脑衰老和神经变性的新研究途径。
图1个极化子跳跃在WO 3中诱导的双波段吸收。A在不同时间间隔的GalvanoStatic电荷插入后WO 3膜的原位光学透射率。b,在450 nm(表示可见范围)和1100 nm(代表NIR范围)的WO 3膜的电荷能力的函数。c,od光谱是波长的函数,以及北极理论的吸收系数的理论计算。理论曲线已分解为下两个面板中的两个偏振子峰。d,在电荷插入过程中在不同时间的WO 3(W 4 F峰)膜的XPS光谱。e,d中XPS光谱得出的相应的W值的比例。XPS光谱和其他电荷插入状态的比例可在图中看到S6。f,C(A 1,A 2;左侧尺度)的两个峰的振幅显示为LI插入时间的函数,并将其与位点饱和理论获得的跳跃效率(H.E;右手尺度)相比。H.E.通过45分钟XPS的插值在D下降到零,从而获得了15和30分钟的点。
摘要:电色素的低功耗使其广泛用于主动阴影窗户和镜子,而柔性版本可用于可穿戴设备。最初的可拉伸电致元元素的初始演示有望与复杂表面的良好相符。在这里,完全集成的本质上可拉伸的电致色素设备被证明为单个元素和3×3显示器。导电和电离离子液含量的聚(3,4-乙二醇二苯乙烯)聚苯乙烯磺酸盐磺酸盐与聚(乙烯基醇)的电解质结合在一起,形成完整的细胞。显示出15%的传输变化,而不透明的反射设备的反射率变化为25%,即使在30%的应变下,转换时间也<7 s。在电化学和机械应变循环下均具有稳定性。一个被动矩阵显示器在应变下表现出可寻址性和低串扰。可比的光学性能与柔性电色素和更高的可变形性提供了可穿戴,生物识别监测和机器人皮肤设备的有吸引力的品质。关键字:电致色素,可拉伸,PEDOT,显示,导电聚合物,离子皮肤,电子皮肤
内在途径哺乳动物的内在途径,也称为线粒体介导的凋亡途径,在细胞外和细胞内应激(例如辐照,细胞毒性药物和氧化应激)上被激活。响应于该信号,Bcl-2家族蛋白Bax和Bak的p53依赖性激活被插入线粒体膜中,从而使细胞色素C从线粒体中释放出来。同时抑制了抗凋亡Bcl-2家族蛋白Bcl-2和Bcl-XL。细胞色素C的释放是形成一个称为凋亡组的结构的关键事件,该结构包括APAF-1(70R-49373和70R-15757),Procaspase-9和细胞色素c。细胞色素C促进APAF-1蛋白的七聚体,从而与procaspase-9结合以形成凋亡小体。仅激活procaspase-9才能下游caspase起作用,例如caspase 3。出于这个原因,procaspase-9称为引发剂caspase,而下游则称为效应子caspase。这些效应子胱天蛋白酶进行了细胞的降解。在哺乳动物中,凋亡蛋白抑制剂(IAP)可以抑制内在途径中的胱天蛋白酶的激活,这是当表达SMAC/Diablo等IAP拮抗剂时产生的。Bcl-2和IAP都调节哺乳动物的内在途径。
研究人员使用高分辨率 Ganymede™ 系统,重点展示了视网膜新生血管 (RNV) 如何影响眼睛的结构。图 1 显示了白化兔的正常视网膜。图 2 显示了色素兔的正常视网膜。图 3 显示了患有 RNV 的白化兔。图 4 显示了患有 RNV 的色素兔。视网膜血管 (RV)、神经纤维层 (NFL) 和视网膜前纤维血管膜 (PFM) 也进行了标记。