NORGEN的纯化技术纯化基于使用Norgen专有树脂作为分离矩阵的自旋色谱柱色谱法。该过程为头发样品提供了简单简便的线粒体DNA隔离方案。首先,将DTT,蛋白酶K和裂解添加剂A添加到发轴上,并在55°C下孵育30分钟。完全溶解了头发轴一旦通过离心去除任何未消化的头发。然后收集清洁上清液,并添加异丙醇和裂解缓冲液B。然后将裂解物加载到自旋柱上。Norgen的自旋柱以取决于离子浓度的方式结合核酸,因此只有DNA才能与柱结合,而蛋白质和其他污染物则在流通中除去或保留在树脂顶部。然后使用提供的洗涤溶液A洗涤结合的DNA,并使用洗脱缓冲液B洗脱纯化的DNA。纯化的mtDNA(以及基因组DNA如果使用毛根)不含所有抑制剂,可用于包括PCR和测序在内的敏感下游应用中。
NORGEN的纯化技术纯化基于自旋色谱柱色谱法。噬菌体DNA优先纯化从其他细胞成分(例如蛋白质)中纯化,而无需使用苯酚,氯仿或氯化葡萄球菌。此过程的起始材料被阐明了噬菌体上清液,该噬菌体上清液已与液体培养物中的细菌碎片分离。最初,噬菌体颗粒通过提供的裂解缓冲液B通过热和化学裂解过程裂解(请参阅第4页的流程图)。异丙醇被添加到裂解物中,并将溶液加载到自旋柱上。Norgen的自旋柱以取决于离子浓度的方式结合核酸,因此只有DNA才能与柱结合,而大多数RNA和蛋白质在流潮中除去。然后用提供的洗涤溶液A洗涤结合的DNA,以去除剩余的杂质,并用洗脱缓冲液洗脱纯化的总DNA。纯化的总噬菌体DNA是最高的完整性,可用于许多下游应用。
本研究调查了土耳其居米什哈内当地蜂蜜样品中氟氯氰菊酯、氯氰菊酯、溴氰菊酯和马拉硫磷的残留量。测定采用 GC/MS-MS 方法,使用 HP-5MS 色谱柱,条件如下:炉温 120 ℃,进样温度 250 ℃,压力 121.9 kPa,流速 1.2-1.8 mL/min。样品采自居米什哈内的 18 个站点。色谱测定采用标准加入法。15 个站点的样品中未检测到农药,但在其他三个站点采集的样品中检测到了目标农药。在 1.5 mL/min 流速下,残留水平从 0.18 mg/kg 到 9.50 mg/kg 不等。还使用 Box-Behnken 设计 (BBD) 优化对结果进行了评估。采用多元实验设计(流速和站点、农药类型)构建二次模型。回归分析表明,实验结果与模型预测值较为接近,判定系数(R2)为0.985。
由于具有不一致的信号模式,我们可以将动态散射视为聚焦入射电子的单个原子的叠加。在这里,我们扩展了所谓的原子透镜模型[3](以前为ADF开发)到光谱法。对于混合色谱柱,随着计算成本而迅速超过了多层计算的能力,订购的可能性呈指数增长。相比之下,原子镜头模型允许快速生成EDX散射截面,并在通道条件下考虑元素的排序。如图2对于核心壳Au-pt纳米棒,从多层计算中提取的散射横截面与原子透镜模型预测相当一致,但与假定信号与每种类型的原子数线性缩放的线性模型的偏差大不相同。要将原子镜头模型部署到实验结果中,我们可以合并实验测量的EDX部分横截面[4],这被称为部分,因为它在归一化过程中包括所有显微镜依赖性因子,从而绕过了EDX检测器的困难表征。此方法使我们能够探索具有多个元素的异质材料的巨大顺序可能性。
设施:PCR 装置-自动热循环仪(Applied biosystems)凝胶文档系统(Biorad)、HPLC – 制备和分析(Shimadzu)、二氧化碳培养箱、蛋白质凝胶电泳系统(Amersham Pharmacia)、色谱柱(Amersham Pharmacia)、冷冻离心机(Heraeus)、分光光度计(Shimadzu 2)、14 升发酵罐 - 全自动(Scigenics)、迷你发酵罐(Eyela Inc. Japan)、伽马计数器(ECI)、相差显微镜(Nikon,日本)、倒置相差显微镜(Olympus CK 40)、冻干机(Yamata Neocool,日本)、电子天平(Mettler)、实时 PCR 应用生物系统)、纳米分光光度计、低温恒温器、-80˚C 深度冷冻机(Thermo、Panasonic、 Eppendorf)、脉冲场凝胶电泳 (PFGE)-Bio-Rad、II 级生物安全柜、步入式冷藏室、多模式平板读数器、荧光细胞分选器- FAC、带照相机附件和其他配件的倒置显微镜、荧光显微镜、植物组织培养设施、动物细胞培养设施、斑马鱼设施、秀丽隐杆线虫设施、小动物设施。
(12)(9)重复(10)和(11)的其余混合物。 (如果滤液是高粘性的,并且保留在色谱柱中,则建议在20,000 x g处离心。)(13)将Dneasy Mini Spin柱连接到新的2 mL收集管上,并添加500μL的缓冲液AW2。在室温下在6,000 x g处离心1分钟,然后丢弃滤液。 (14)将500μl的缓冲液AW2添加到Dneasy Mini自旋柱中,然后在室温下离心2分钟以干燥膜。 (15)将Dneasy Mini Spin柱转移到新的1.5 mL管,然后将50μl缓冲液AE直接转移到Dneasy膜上。在室温下(15-25°C)孵育5分钟后,在室温下在6,000 x g处离心1分钟,然后收集滤液。 (事先快速缓冲AE至65度增加了DNA的产量)3。确认DNA溶液的质量1)使用分光光度计在230 nm和260 nm处获得的样品DNA溶液的吸光度(A230,A260)测量。 <准备什么>
血液DNA分离最大套件产品插入产品#31200 NORGEN的血液DNA分离最大试剂盒设计用于快速制备基因组DNA,从3 mL到10 ml全血。纯化基于自旋柱色谱作为分离矩阵。NORGEN的色谱柱在优化的盐浓度下结合DNA,并在低盐和略微碱条件下释放结合的DNA。纯化的基因组DNA在所有测试的限制酶中完全消化,并且与下游应用完全兼容,包括PCR,实时PCR,远程PCR,用于亲子关系测试和Southern印迹分析的RFLP分析。NORGEN的血液基因组DNA分离最大试剂盒可从包括人类在内的各种物种的血液中分离基因组DNA。基因组DNA优先从其他细胞蛋白质成分中纯化。基因组DNA的典型产率将根据血液样本的细胞密度而变化。单个样品的准备时间小于55分钟,每个套件都有足够的材料进行12种制剂。套件组件
对 2020 年 1 月在西班牙莱昂市收集的天然雨水样本进行了分析。对液体样本采用离子色谱技术(Metrohm Seri 800 装置,配备 Metrosep A supp 5 色谱柱),该技术可根据离子电荷特性分离痕量阴离子和阳离子。通过这种方式,它主要检测水中可能存在的不同元素的浓度(使用 Panreac 供应商的认证标准溶液作为参考,浓度为 1000 mg/L),例如氯化物、氟化物、硝酸盐和硫化物 [2–4]。对雨水的溶解固体部分进行了进一步分析。将 400 mL 等分试样冻干后,通过粉末 X 射线衍射 (XRD) 分析干残留物以确定其成分。采用Bruker D8 Advance衍射仪,Cu管作为X射线源(λ Cu Kα = 1.54 Å),管电压40 kV,电流40 mA。采用Bragg−Brentano几何结构记录结果,范围为2θ = [10−70°],步长0.05°,累积时间为3 s。采用拟合软件Topas 5.0处理数据。
抽象军团菌是饮用水分布和前提铅系统中重要的机会病原体。这项研究研究了颗粒活性碳(GAC)过滤过程中肺炎军团菌的潜在生长,考虑到它们在滤床中的生存状态。使用实验室规模的生物活性GAC柱,并以不同的生存能力(可培养,可行但不可培养(VBNC)和死细胞)尖刺肺炎。监测废水中的基因浓度70天。在与可培养细胞尖刺的柱中,即使在运行70天后,在废水中也检测到高水平的肺炎。然而,当引入VBNC细胞时,废水中的肺炎乳杆菌的水平明显低,尽管仍然高于死细胞峰值的色谱柱。这表明肺炎乳杆菌的生长潜力受到进水中其生存状态的影响。这些发现强调了军团菌再生的生态潜力,并强调了在GAC治疗期间监测其行为的必要性,尤其是当涉及臭氧期间不完全失活时。
已经开发了一种新的,重新付费,简单,简单且可重复的稳定性指示RP-HPLC方法,用于同时估计片剂中的Linagliptin和Dapagliflozin丙二醇一水合物。使用流动A期磷酸盐缓冲液(pH 3.5)和流动相B期乙腈的梯度程序设置来实现Dapagliflozin和Linagliptin的分离。使用在25°C的惯性相-3V,150 x 4.6毫米,5µ色谱柱作为固定相。流速保持1.0 mL/分钟,并在233 nm处进行检测。的保留时间分别为Linagliptin和Dapagliflozin分别为2.86分钟和7.45分钟。该方法被发现是稳定性的,表明所有降解物与Linagliptin和Dapagliflozin峰分离。该开发的方法已根据ICH指南对系统的适用性,特异性,精度,线性,准确性和鲁棒性进行了验证。这种方法是特定的,并且在Linagliptin和dapagliflozin的浓度范围为2.5-7.5 µg/ml和5-15 µg,浓度范围分别为Linagliptin和Dapagliflozin的相关系数(R2)值分别为0.998和0.999。该方法具有未来的潜力,可用于常规质量控制分析以及加速稳定性测试。