本文件适用于 Ames 内部管理的 C 类和 D 类太空飞行系统、有效载荷和技术演示项目以及 Ames 采购的航天器或航天器部件。对于从知名航空航天承包商采购的航天器和航天器部件,这些公司制定的最佳实践可能是可以接受的。在制定本文件要求的过程中,应解决个别承包商最佳实践的可接受性问题。国际空间站有效载荷只需满足国际空间站要求,并应使用本文件作为设计指导和最佳实践。经 ACE 和执行组织管理层同意,出于小规模努力或战略原因,可以放弃本文件的适用性。本标准是一份动态文件,并定期评估和更新以提高其清晰度和有效性。虽然工程原理和实践是稳定的,但所选要求集可能会根据它们是否继续通过纳入而保证增加可见性而发展。在本文件中,除非另有说明,否则所有文件引用均假定为最新版本。P.3 权限
复合材料设计和飞机 0_ 部件重新设计的领域特定设计架构 ...................................................................................... 115 ":_v W. F. Punch III, K.J.Keller, W. Bond 和 J. Sticklen gL_ RT-Syn:实时软件系统生成器 .................................................. 121<-El Dorothy SetIiff { 自动化 FEA 编程 ............................................................................. 127-_ _9 Naveen Sharma 软件设计知识建模 ............................................................................. 134 _j_O Mildred Shaw 和 Brian Gaines
• 每轴总动量存储:+/-1.5 至 +/- 6.0 mN.ms 每轴一个反作用轮 • 最大扭矩:0.1 mN.m • 三轴磁力矩器配置,磁偶极矩高达 0.4 A.m² • 外部接口可连接 6 个或更多太阳传感器 • 即发即弃控制 • 标准 I 2C 兼容接口。RS422、RS485 和 UART 为选配 • 即插即用设计 • 主要组件通过了高达 45 krad 的辐射耐受测试 • 内置指向模式:目标指向、太阳指向、天底指向、快速旋转模式(使用磁力矩器时最大 200°)和防翻滚 • 质量轻:400g(带 RW210.15 反作用轮) • 功率低(标称值):1.4W • 外形尺寸:95 x 90 x 32mm
全球需求增长和气候变化限制导致可再生能源 (RES) 在能源生产中的份额被整合和最大化。这是减少污染物排放和促进向更清洁未来过渡的关键方面。为了限制化石燃料的使用,并减少污染物排放以限制全球变暖,讨论并实施了许多协议和激励措施。考虑到这一点,可再生能源的份额不断增加。为了支持这一实施,同时为这些间歇性电源提供电力储备,能源存储系统正变得越来越被使用和必要。随着这些变化,氢气的使用越来越多,它是一种可以在不产生温室气体排放 (GGE) 的情况下生产电力的手段。本文介绍了一种具有多种来源的供电系统并分析了其运行情况,该系统包含光伏板、风力系统、燃料电池、氢气发生器、电力和氢气存储系统,可为罗马尼亚一所大学校园的学生宿舍提供电力,并提供生产消费者的可能性。
该项目致力于开发制造单片集成、可寻址的微型和纳米 LED 阵列的技术,这些阵列可发出可见光。微型 LED 阵列将在明亮的高分辨率显示器、无线 Li-Fi 通信或增强现实和虚拟现实眼镜中得到广泛应用。纳米 LED 阵列的应用包括光遗传学、超分辨率显微镜、无掩模光刻以及化学和生物医学传感器。开发的技术将允许 LED 阵列按顺序放置,一个叠在另一个上面,发出不同波长的光。
最终的[ 删节 ]预期将由我们与[ 删节 ](代表其本身及代表[ 删节 ])就[ 删节 ]达成协议而定。[ 删节 ]预期将于[ 删节 ]或前后生效。除非另有公布,[ 删节 ]将不会超过每[ 删节 ]港元[ 删节 ],而目前预期将不低于每[ 删节 ]港元[ 删节 ]。申请[ 删节 ]的投资者在申请时(视申请渠道而定)可能需要支付最高[ 删节 ],即每[ 删节 ] 港元[ 删节 ],另加1.0%经纪佣金、0.0027%证监会交易征费、0.00015%AFRC交易征费及0.00565%联交所交易费,惟如[ 删节 ]低于每[ 删节 ]港元,则可退还该等费用。如因任何原因,我们与[ 删节 ](为其本身及代表[ 删节 ])未能于[ 删节 ]中午12时正或之前(香港时间)达成[ 删节 ],则[ 删节 ](包括[ 删节 ])将不会进行并会失效。
我们从神经科学(“连接组学”)了解到,大脑总体上是一个非常稀疏的网络,具有相对较小的局部密集神经元簇。这些拓扑特性对于大脑高效、稳健地运行以及以分层模块化方式处理信息的能力至关重要。另一方面,我们今天使用的人工神经网络非常密集,甚至是完全连接的,至少在连续层之间是如此。此外,众所周知,深度神经网络高度参数化:修剪研究表明,通常可以消除 90% 的连接(权重)而不会显着降低性能。然而,修剪通常是在密集网络训练之后进行的,这只会提高推理过程的运行时效率。前面的观点表明,我们需要设计稀疏神经网络的方法,无需任何训练,在训练后其性能几乎与相应的密集网络一样好。本次演讲将首先介绍一些修剪文献的背景,无论是在训练之后还是在训练之前。然后,我们将介绍一种最近提出的(ICML 2021)方法,称为 PHEW(具有更高边权重的路径),该方法在训练之前创建稀疏神经网络,并且可以快速学习并很好地概括。此外,PHEW 不需要访问任何数据,因为它仅取决于给定网络架构的初始权重和拓扑。
我们提供了经验证据,表明在某些标准问题上,我们的方法比传统的建设性回溯方法效率高得多。例如,在 n 皇后问题上,我们的方法可以快速找到一百万皇后问题的解[28]。我们认为基于修复的方法之所以能够胜过建设性方法,是因为完整分配在指导搜索方面比部分分配更具信息性。但是,额外信息的效用取决于领域。为了帮助阐明这种潜在优势的性质,我们提出了一个理论分析,描述了各种问题特征如何影响该方法的性能。例如,该分析显示了当前分配和解决方案之间的“距离”(就所需的最少修复次数而言)如何影响启发式的预期效用。本文描述的工作受到 Adorf 和 Johnston [2, 22] 开发的一种令人惊讶的有效神经网络的启发,该网络用于安排哈勃太空望远镜的天文观测。
ASMPT(香港交易所股票代码:0522)是全球领先的半导体和电子产品制造硬件和软件解决方案供应商。ASMPT 总部位于新加坡,其产品涵盖半导体组装和封装以及 SMT(表面贴装技术)行业,从晶圆沉积到将精密电子元件组织、组装和封装到各种终端用户设备(包括电子、移动通信、计算、汽车、工业和 LED(显示器))的各种解决方案。ASMPT 与客户密切合作,持续投资研发,帮助提供具有成本效益、塑造行业的解决方案,从而实现更高的生产率、更高的可靠性和更高的质量。ASMPT 是恒生综合规模指数下的恒生综合中型股指数、恒生综合行业指数下的恒生综合信息科技行业指数和恒生香港 35 指数的成分股之一。如需了解有关 ASMPT 的更多信息,请访问我们的网站 www.asmpt.com。媒体联系人: