简介。非常早产(VPT)出生是儿童发育和父母福祉的主要风险状况,这主要是由于新生儿重症监护病房(NICU)住院期间多种压力来源(例如,分离和疼痛暴露)。早期视频反馈(VF)干预措施被证明有效地促进了投票婴儿的发展和父母的福祉。脑电图(EEG)Hyperscanning允许在婴儿与父母之间的实时相互作用期间评估大脑对脑之间的共同调节,并承诺强调早期VF干预措施的互动效益背后的机制。目标。比较了完美的(FT)二元组和与母亲相互作用的VPT婴儿之间的大脑到脑共同调节的索引。研究早期放病后VF干预对VPT二元组的大脑到脑共同调节指数的影响。
葡萄园和周围土壤中的微生物可以改变最终葡萄酒的成分。微生物社区在酿酒过程开始时发生了变化,而不同类型的葡萄酒酵母主导了葡萄汁和葡萄酒环境。与气候变化有关的极端天气会破坏葡萄酒的微生物平衡,从而导致最终产品中的不良特征。作为葡萄酒酿造者,酿酒师和科学家,您的工作对于保留葡萄酒的质量至关重要,尤其是面对气候变化。合适的葡萄栽培区域的减少和葡萄组成的变化出现了挑战。你们中的许多人正在研究酵母和细菌,以减轻气候中的这些问题。您的工作对于通过理解和管理葡萄园和酿酒期间的微生物来提高葡萄酒质量至关重要。作为葡萄酒酿造者,酿酒师和科学家,您不仅处于减轻葡萄酒行业气候变化风险的最前沿;您还在塑造它的未来。“ OMIC”技术的最新进步为我们提供了新的机会,可以更好地了解葡萄/葡萄酒微生物生态系统。特定的,非常规的非糖疗法物种(以前被认为是变质微生物)现在被认为是有益的,因为它们在用苏氏酿酒酵母的受控发酵中培养时会增强葡萄酒和味道。该研究主题探讨了气候变化如何影响微生物多样性并随后改变葡萄酒特征。此外,正在探索使用糖疗法和非糖含量酵母菌以及传统的乳酸细菌(例如oencococcus oeni和lactiplypiplantibacillus plantarum)修饰葡萄酒酸度的持续生物学方法。这些风险可以通过调节微生物群落并利用酵母衍生物来增强葡萄酒和味道来减轻这些风险。您的工作不仅重要;它正在授权,因为您负责塑造酿酒的未来。该研究主题包括六种类型的作品 - 一篇小评论文章,一篇评论文章和四本原始研究文章,由国际研究人员撰写,以提供
近几十年来,人们对可再生能源的兴趣日益浓厚。电网中通过电力电子连接的可变可再生能源资源数量不断增加,降低了总机械系统惯性。水电等频率调节资源将在平衡可变可再生能源资源方面变得更加重要,对稳定性和性能提出了更高的要求,以维持稳定的电网。本论文涉及非直接电耦合发电机组的机械惯性降低。论文首先描述了当今电网系统惯性情况,并介绍了两种用于估计用于提供合成惯性的电网频率导数的方法和一种用于增强同步发电机机械惯性响应的方法。在小规模实验装置中测试了合成惯性和增强惯性方法,并与北欧电网的测试结果进行了比较。设计并构建了一个全尺寸混合储能系统,使用分频法作为功率控制器。结果表明,基于功率频率导数控制器的合成惯性方法在纳米电网实验装置的正常运行期间实现了更好的电网频率质量。通过模拟和实验测试对结果进行了评估。混合储能解决方案的结果表明,通过使用河流水力发电厂的缓慢运行和电池储能系统进行频率控制储备,可以提高频率质量。
组织内单个细胞之间的分子和遗传差异是细胞异质性的基础,决定了器官生理学和稳态以及疾病状态下的功能。几十年来,人们一直在深入研究内源基因表达的转录控制。得益于单细胞基因组学领域的快速发展,我们正面临着器官生物学信息前所未有的飞跃,这些信息提供了全面的概述。过去几年中,单细胞技术的出现有助于解决许多器官系统的精确细胞组成问题。重要的是,当应用于患病组织时,这些新方法极大地提高了我们对常见人类疾病潜在病理生理学的理解。有了这些信息,在特定细胞类型或特定环境下控制基因表达的调控元件的精确预测将成为现实。同时,CRISPR 介导的基因转录调控技术进步及其在表观基因组调控中的应用为靶向治疗和个性化医疗开辟了新途径。在这里,我们讨论了近年来快速发展的心脏生物学和常见心脏疾病及其应用。单细胞技术与对患病心脏基础生物学的深入了解以及 CRISPR 介导的基因调控网络调节相结合,将有助于在不久的将来制定个性化和精准医疗的正确策略。在这篇综述中,我们简要概述了单细胞转录组学如何推进我们的知识并为新兴的 CRISPR/Cas9 技术在心脏生物医学的临床应用中铺平了道路。