基于WinCE平台的通用便携式WSCN节点配置仪设计与研究 姚锋,王义怀* 苏州大学计算机科学与技术学院,苏州 215006,(中国) E-mail: yihuaiw@suda.edu.cn 摘要 无线传感器与控制器网络节点是物联网的重要组成部分,它的设计在物联网产品开发中起着重要作用。实现和配置WSCN节点的信号强度、地址、产品信息在研发、生产、安装和维护过程中是必不可少的。鉴于获取WSCN节点基本信息和配置仪较少,在深入分析WSCN节点的信号强度、地址配置、产品属性等技术的基础上,利用嵌入式软硬件组件化的设计思想,提出了一种基于WinCE平台的可触摸便携式WSCN节点配置仪的方案和实现方法。 WSCN节点的通信采用Freescale公司2014年正式发布的ARM Cortex-M0+内核的KW01-Zigbee芯片作为核心,软件框架基于MQXLite-RTOS,遵循嵌入式软件工程的基本原理,具有良好的可移植性和可重用性。实践表明,该系统通信稳定,数据准确可靠,可控性好,操作方便,是一种新型的WSCN节点配置仪。
近期向可持续能源系统的转变见证了无碳和碳高效发电在电网中的快速部署。然而,碳减排的好处并非在整个电网中均匀体现。每台发电机可以有不同的碳排放率。由于物理潮流的存在,节点功耗由一组发电机的组合来满足,而这种组合由网络拓扑、发电机特性和电力需求决定。本文介绍了一种基于物理潮流模型的技术,该技术可以根据发电和潮流信息有效地计算每个单个发电机贡献的节点碳排放量。我们还扩展了该技术以计算节点平均碳排放量和边际碳排放率。模拟结果验证了计算的有效性,同时我们的技术为碳审计、碳导向需求管理和未来碳导向容量扩张等应用提供了基本工具。
影响罕见病患者及其家属心理健康的因素有很多。一些罕见病会直接影响大脑功能,使心理健康症状更容易出现。其他罕见病主要影响身体健康,并产生连锁的情绪后果。患者往往要经历多年的症状和医学检查才能确诊,这会导致长期的压力和持久的心理健康影响。任何长期或严重的健康问题都可能引发不确定性和生活方式的改变,但罕见病的诊断可能会使人更加孤立,因为信息有限、缺乏专业知识以及缺乏与相同病症的人的接触。患有罕见病会导致经济困难,加剧心理健康风险。虽然其中一些风险因素是不可避免的,但了解它们如何结合在一起并导致部分(但不是全部)患者及其家属的长期心理健康问题非常重要。
摘要 — 在本文中,我们提出了一种基于碳纳米管 (CNT) 场效应晶体管 (CNFET) 的静态随机存取存储器 (SRAM) 设计,该设计在 5 纳米技术节点上基于性能、稳定性和功率效率之间的权衡进行了优化。除了尺寸优化之外,还评估和优化了包括 CNT 密度、CNT 直径和 CNFET 平带电压在内的物理模型参数,以提高 CNFET SRAM 性能。基于亚利桑那州立大学 [ASAP 7 纳米 FinFET 预测技术模型 (PTM)] 库,将优化的 CNFET SRAM 与最先进的 7 纳米 FinFET SRAM 单元进行了比较。我们发现,与 FinFET SRAM 单元相比,所提出的 CNFET SRAM 单元的读取、写入 EDP 和静态功率分别提高了 67.6%、71.5% 和 43.6%,稳定性略好。 CNFET SRAM 单元内部和之间的 CNT 互连被视为构成全碳基 SRAM (ACS) 阵列,本文第二部分将对此进行讨论。本文实施了一个具有铜互连的 7 纳米 FinFET SRAM 单元并将其用于比较。
具有状态LED的操作面板。可选的外部诊断手机,带有LCD显示。具有16x 2.5英寸前驱动器托架的型号可以选择支持集成的诊断面板。XClarity控制器2(XCC2)基于ASPEED AST2600底板管理控制器(BMC)的嵌入式管理。用于管理XCC2远程访问的专用后太端口。XCLARITY管理员用于集中基础架构管理,XCLARITY INTECTOR插件和XClarity Energy Manager集中式服务器电源管理。XCC白金,启用远程控制功能和其他功能。
连续变量簇状态与将量子比特编码为玻色子模式的 Gottesman-Kitaev-Preskill (GKP) 结合使用时,可实现基于容错测量的量子计算。对于四轨晶格宏节点簇状态,其构造由固定的低深度分束器网络定义,我们表明,Clifferd 门和 GKP 误差校正可以在单个传送步骤中同时实现。我们给出了实现 Clifferd 生成集的明确方法,并在簇状态和 GKP 资源有限压缩的情况下计算逻辑门错误率。我们发现,在 11.9–13.7 dB 的压缩下,可以实现与拓扑码阈值兼容的 10 − 2 – 10 − 3 的逻辑错误率。所提出的协议消除了先前方案中存在的噪声,并将容错所需的压缩置于当前最先进的光学实验范围内。最后,我们展示了如何直接在簇状态中产生可提取的 GKP 魔法状态。
在过去的10 - 15年中,地震采集设备经历了重大转变。消失的是数千公斤电缆,电池和地球主琴弦的船员。较新的淋巴结地震记录系统没有任何电缆,它们包含地球器或磁通机电系统(MEMS),用于时机和位置,电池和内存的全球定位系统(GPS),它们非常轻巧。这些系统是自主的,并且数据记录在本地内存上,然后在threspriber Station下载,该记忆将同时收集数据并收集电池(诱导)。这与过去的有线系统发生了极大的变化。节点船员更小,更安全,更快。但是,由于没有实时审查数据,因此存在数据质量控制问题的潜力。在本演讲中,我们将回顾一些系统,并突出各种产品产品中的某些差异。
心力衰竭与心力衰竭中的心室(AV)节点功能障碍有关,AV节点功能障碍与死亡率和心力衰竭住院的风险增加有关。本研究旨在通过研究整个节点转录组的变化来了解心力衰竭中AV节点功能障碍的原因。研究了压力超负荷引起的心力衰竭的小鼠横向主动脉缩减模型;使用心电图和超声心动图评估功能变化,并使用RNASEQ对AV节点的转录组进行定量。心力衰竭与PR间隔的显着增加有关,表明AV节点传导和AV节点功能障碍的放缓以及3,077个转录本的显着变化(占转录组的5.6%)。许多系统受到影响:支持AV节点传导的转录本被下调,并且GWAS确定为PR间隔的决定因素的转录本发生了变化。此外,还有证据表明肌节重塑,从脂肪酸转变为葡萄糖代谢,细胞外基质的重塑以及转录和翻译机械的重塑。有证据表明,这种广泛重塑的原因是AV节点:多种细胞内信号通路失调的证据,109个蛋白激酶和148个转录因子的失调以及中性粒细胞,单细胞,巨噬细胞,巨噬细胞,b -lymphocyquly和cytysrecred and cytscultion和andytrecred的免疫反应以及免疫反应。总而言之,心力衰竭中AV节点的AV节点构成AV节点的广泛转录重塑。
近年来,可持续能源系统的转变见证了无碳和碳高效发电在电网中的快速部署。然而,碳减排的好处并非在整个电网中均匀体现。每个发电机可以有不同的碳排放率。由于物理功率流的存在,节点功耗由一组发电机的组合来满足,而这种组合由网络拓扑、发电机的特性和电力需求决定。本文介绍了一种基于物理功率流模型的技术,该技术可以根据发电和功率流信息有效地计算每个单个发电机贡献的节点碳排放量。我们还扩展了该技术以计算节点平均碳排放量和边际碳排放率。模拟结果验证了计算的有效性,同时我们的技术为碳审计、碳导向需求管理和未来碳导向产能扩张等应用提供了基本工具。