本文介绍了基于自然语言句子所表达的知识的自动问答系统的改进。该系统是使用关系数据库实现的。该系统将成为开发用于获取所提问题答案的 Web 应用程序的基础。为了将自然语言句子输入关系数据库,必须准备好并正式记录它们。问答系统的开发基于概念框架知识节点 (NOK) 的应用,其形式化记录适合输入到关系数据库中,从中可以获得问题的答案。本文介绍了一种将英语句子自动转换为形式化记录的应用程序。该应用程序在 100 个简单的英语句子上进行了测试,并将自动转换的结果与手动处理相同句子的结果进行了比较。
摘要。针对节能和最佳WSN的最佳部署问题,本文建立了最佳覆盖模型。同时,提出了一种基于粒子群理论和量子的粒子群优化的节能部署算法。准物理策略,即准实体和准库仑力,在量子粒子群优化算法的位置进化方程中引入,这可以合理地调节传感器节点之间的距离。此外,该算法可以以低区域重复速率获得快速优化。此外,对WSN节点的传感半径进行动态调整,以最大程度地减少节点的能量消耗。模拟结果表明,与传统的粒子群和量子性粒子群群优化方案相比,所提出的算法在网络覆盖率和收敛速度方面具有更好的性能。同时,该算法在减少WSN中的节点能量消耗方面具有一定的优势。
在保证速度性能和低功耗要求的超短通道 CMOS 节点中,TDDB 仍然是一个关键的可靠性问题。在交流射频信号操作期间,“关断状态”与“导通状态”模式依次发生,从低频(kHz)到极高频范围(GHz)[1-2]。即使“关断状态”应力通常以比“导通状态”应力更小的速率降低器件性能,但它可能成为器件在射频域和毫米波应用中运行的限制因素,在毫米波应用中,电源电压 V DD 通常是逻辑应用中使用的电源电压的两倍。不仅器件参数漂移可能变得显著,而且还可能触发栅极-漏极区域的硬击穿(BD)。因此,准确评估关断状态 TDDB 的可靠性并深入了解器件级的磨损机制至关重要,因为可以在 28nm FDSOI CMOS 节点的漏极(图 1a、c)和栅极(图 1b、d)电流上观察到击穿事件。由于空穴和电子的碰撞电离 (II) 阈值能量和能垒高度不同,因此导通或关断状态下热载流子 (HC) 的产生及其 V GS / V DS 依赖性在 N 沟道和 P 沟道中明显不同[3] 。通过低栅极电压下的 HC 敏感性对 P 沟道和 N 沟道进行了比较[4],重点关注注入载流子效率,一方面主要考虑导通状态下的热载流子退化 (HCD) 下的 P 沟道侧,另一方面考虑关断状态下的 N 沟道侧,因为热空穴注入引起的损伤和 BD 敏感性更大。这意味着高能 HC 可能在关断模式下在栅极-漏极区域触发 BD 事件[5-6],与热空穴效率有关[7] 。
引言如今,点对点量子密钥分发 (QKD) 已经成为商业现实。商用 QKD 系统的范围通常在光纤上为 100 公里。学术系统和新协议可以达到数百公里 1、2。中国墨子号卫星已经展示了与低地球轨道卫星的自由空间 QKD 链路 3。然而,单个点对点链路的范围仍然受到链路功率损耗的限制 4。为了扩展 QKD 的实际应用,有必要将范围扩展到全球 QKD 并提供更复杂的网络拓扑 5。随着量子中继器等新技术的出现,这种扩展的多功能性可以通过所谓的可信节点 (TN) 6 实现。在 TN 中,量子信号被测量并转换为经典信号。生成一个新的经典信号,转换为量子,然后发送到下一个节点。 TN 可用作中继,提供长距离 QKD,也可用作交换机,提供复杂的拓扑 5 。然而,由于 TN 包含经典信号,原则上可以被复制,因此 TN 内不存在量子安全性。必须信任 TN 并对其进行物理保护,以避免数据泄露 5 。因此,出于安全目的,TN 代表了完整的端到端 QKD 传输中的薄弱环节。在本文中,术语“长距离 QKD”是指全球 QKD,即在地球上任意两点之间部署和实施 QKD 的能力。最近,英国知识产权局向 Arqit Ltd. 公司授予了专利号 GB2590064(https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064)我们还将本专利中描述的协议称为 ARQ19 协议。本专利旨在提供没有 TN 的长距离 QKD。根据这些说法,现在可以使用不受信任的卫星实现全球 QKD。这将改变 QKD 的游戏规则。因此,调查这些说法显然很重要。不幸的是,据我们所知,它们尚未在任何科学期刊上通过随附的公开披露得到验证。因此,我们的分析基于已发布的 ARQ19 专利和 Arqit 在美国证券交易委员会 (SEC) 提交的 20-F 年度报告 (https://www.sec.gov/Archives/edgar/data/0001859690/000110465921150276/arqq-20210930x20f.htm)。本报告将
在生物网络中,某些节点比其他节点更有影响力。最具影响力的节点是那些其消除会导致网络崩溃的节点,而检测这些节点在许多情况下至关重要。然而,当生物网络规模很大时,这是一项艰巨的任务。在本文中,我们设计并实现了一种高效的并行算法,利用图形处理单元 (GPU) 检测大型生物网络中的有影响力节点。所提出的并行算法背后的基本概念是重新设计几个计算量巨大的检测有影响力节点的程序,并将其转化为相当高效的 GPU 加速原语,如并行排序、扫描和缩减。四个局部指标,包括度中心性 (DC)、伴随行为 (CB)、聚类系数 (CC) 和 H 指数,用于衡量节点影响力。为了评估所提出的并行算法的效率,在实验中采用了五个大型真实生物网络。实验结果表明:(1) 与相应的串行算法相比,所提出的并行算法可以实现大约 48 ∼ 94 的加速比; (2) 与在多核 CPU 上开发的基线并行算法相比,所提出的并行算法对于 DC 和 H-Index 的加速比为 5 ∼ 9,而对于 CB 和 CC 的加速比由于度分布不均匀而略慢;(3) 当使用 DC 和 H-Index 时,所提出的并行算法能够在不到 3 秒的时间内检测出由 1.5 亿条边组成的大型生物网络中的影响节点。© 2019 Elsevier BV 保留所有权利。
摘要 —本文介绍了适用于自供电无线传感器网络 (WSN) 节点的硬件平台的设计、实现和特性。其主要设计目标是设计一个混合能量收集系统,以延长 WSN 节点在现场环境中部署后的使用寿命。除了实现最佳组件(微控制器、传感器、射频 (RF) 收发器等)以实现最低功耗外,还需要考虑能源,而不是频繁充电或更换电池。因此,该平台采用了多源能量收集模块,从周围环境中收集能量,包括风能、太阳辐射和热能。该平台还包括一个通过超级电容器、RF 收发器模块和主微控制器模块的能量存储模块。实验结果表明,经过适当集成的 WSN 节点系统将储备足够的能量,并满足现场环境中无电池的 WSN 节点的长期供电需求。实验结果和九天的经验测量表明,平均每日发电量为7805.09 J,远远超过WSN节点的能量消耗(约2972.88 J)。
有关QKD在电信网络中集成和应用的研究领域涉及其针对传统的净工作攻击的安全性,例如DOS(拒绝服务)AT-TACS,这将使技术无法使用(Dervisevic等人,2022年)。这项研究为对密钥管理器系统(KMS)组件的特定DOS攻击提供了某种方式,这对于QKD技术的操作至关重要。使用商业上可用的QKD设备和Suricata IPS/ID(入侵预防和检测系统)服务在现实世界环境中评估解决方案。本文的组织如下:第2节描述了当前的最新技术,第3节是QKD系统的基本部分,第4节和第5节着重于测试床环境和攻击场景。在第6节中,读者可以找到可以通过各种技术实施的建议的确定性测量结果,第7节代表了我们实验的结果。(Mehic等人,2022b)。
简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
摘要:飞机周转过程中关键里程碑节点的自动采集是机场协同决策发展需求中的重要内容。本文提出一种基于计算机视觉的框架,自动识别航班进出站、停靠/脱离站活动并记录相应的关键里程碑节点。该框架无缝集成了计算机视觉领域的最新算法和技术,包括预处理和关键里程碑采集两个模块。预处理模块从机场地面复杂背景中提取关键里程碑节点执行者的时空信息。第二个模块针对两类关键里程碑节点,即以路内和路外为代表的基于单目标的节点和以对接和解除对接楼梯为代表的基于双目标交互的节点,分别设计了两种关键里程碑的收集方法。构建了两个数据集用于所提框架的训练、测试和评估。现场实验结果表明,所提框架可以替代目前常规的手动记录方法,有助于自动收集这些关键里程碑节点。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。