新闻稿:立即发布 H&M 集团和 WWF 试行新的 AI 解决方案,帮助减轻柬埔寨天然林的压力 金边,2022 年 8 月 25 日:今天推出了一款使用人工智能 (AI) 的新应用程序,以支持服装和纺织工厂减少对森林砍伐的潜在贡献。这是 H&M 集团和 WWF 在柬埔寨就创新技术开发进行的一次激动人心的合作。环境部国务秘书 Neth Pheaktra 阁下表示,环境部对 H&M 集团和 WWF 合作开发的木材人工智能应用程序的推出表示赞赏。“我们赞赏 WWF 和 H&M 集团的这一创新举措,并欢迎 H&M 集团承诺通过其生产链应对气候变化并减轻对天然林的压力,”他说。“WoodAi 应用程序对解决导致森林砍伐的一些因素做出了重要贡献。该部鼓励其他服装品牌效仿这一做法,并支持保护天然森林和野生动物的努力,以造福人类和自然,”Neth Pheaktra 阁下补充道。国务卿呼吁私营部门与柬埔寨王国政府携手合作,通过改善保护区内及周边当地社区的生计来发展当地经济。还鼓励公司尽一切努力帮助减轻对天然森林的压力。政府支持这些举措,以及对软木行业的保护友好和负责任的管理实践。WoodAI 应用程序可以快速识别木材种类,并可以进一步支持服装厂解决生物质采购信息不足的问题。该应用程序只需使用智能手机和微距镜头,即可在工厂门口识别木材种类,帮助工厂验证其用于发电的木材是否来自 H&M 集团批准的种植园树种残留物,例如芒果和腰果,这些树种不太可能导致森林砍伐。
移植物的成功和幼苗的增长反应(腰cardiumis)对三个浓度的吲哚丁酸(IBA)和Scion类型的浓度,而Scion类型明亮的Osei Poku,Ben Kwaku Branoh Banful,Irene Akua Akua Idun Idun Idun Idun Idun Idun Idun idun idun idun Paul Kweku Tandoh*和Michael Osei(Michael Osei)和Michael Osei于10月20日在2024年10月20日(12月20日),12月202日,12月20日,A Decripted 2024 Actection 2024 Actection 2024 Actection 2024 Actection 2024 A Devcri T r a c t腰果是重要的树木作物,具有巨大的出口潜力和经济利益。种子繁殖是一个主要问题,因为与营养繁殖相比,农作物需要更长的时间才能达到可食用的成熟度。此外,无法通过种子传播来确保真正的植物。进行了此实验,以确定不同浓度的IBA和三种接替类型对腰果的移植成功的影响。该研究的实验设计是带有三个复制的随机完整块设计(RCBD)中的4 x 3阶乘布置。第一个因素是IBA的四个不同浓度(0 mL,750 mL,1000 mL和1250 mL)。第二个因素是三个级别(分别是Softwood,Semi-Hardwood和Hardwood)的Scion类型。用1250 mL浓度的IBA处理的半硬木切口花了短的天(13天)才能获得移植物成功,并且比例最高。对于所研究的所有营养参数(植物高度,茎的围栏,叶子数,根生物量和根长度),半hardwood插条用1250 mL浓度的IBA处理,获得了最佳记录,并且在移植后既有幼苗的幸存下降。和Osei,M。2024。int。J. Agril。J. Agril。总而言之,为了成功的移植成功,再加上幼苗的相应生长,最好将1250 mL的IBA浓度与半hardwood Scion一起使用。关键字:Mersitems,激素,细胞壁,愈伤组织,Kwame Nkrumah科学技术大学园艺芽培养系 * Tandoh,P.K。移植物的成功和幼苗生长反应(西卡氏菌)对三种浓度的吲哚丁酸(IBA)和Scion类型的植物。res。Innov。 技术。 14(2):132-145。 https://doi.org/10.3329/ijarit.v14i2.79424介绍来自巴西,腰果(Anacardium accidentale L.)现在广泛地生长在热带地区,在整个热带地区,在16世纪的印度和东非,在印度和东非的显着扩张,在16世纪(Silva et e al ealeal。2024eal。 。 根据Shahrajabian和Sun(2023年)的说法,芒果和开心果也落入了这个家庭,腰果的叶子类似于开心果树的叶子。 常绿的腰果树很快就会变成巨大的,整个树枝的树木,达到约15米的高度(Helgason and Storgaard,2023年)。 在伪苏特(Pseudofruit)或椎弓根(也称为腰果苹果或腰果水果)结束时,腰果在其硬壳上与肾脏相似的外壳在外部生长(Malhotra等,2017)。 根据Shahrajabian和Sun(2023)的说法,水果是肾脏形状的,大约是大小Innov。技术。14(2):132-145。 https://doi.org/10.3329/ijarit.v14i2.79424介绍来自巴西,腰果(Anacardium accidentale L.)现在广泛地生长在热带地区,在整个热带地区,在16世纪的印度和东非,在印度和东非的显着扩张,在16世纪(Silva et e al ealeal。2024eal。 。芒果和开心果也落入了这个家庭,腰果的叶子类似于开心果树的叶子。常绿的腰果树很快就会变成巨大的,整个树枝的树木,达到约15米的高度(Helgason and Storgaard,2023年)。在伪苏特(Pseudofruit)或椎弓根(也称为腰果苹果或腰果水果)结束时,腰果在其硬壳上与肾脏相似的外壳在外部生长(Malhotra等,2017)。根据Shahrajabian和Sun(2023)的说法,水果是肾脏形状的,大约是大小可食用的肿胀水果茎或花梗被称为腰果“苹果”;在其提示上,悬挂的腰果,其中包含种子或“坚果”(Essien等,2021)。
对化学防腐剂的细菌和真菌抵抗是具有重大健康和经济影响的主要食品安全问题。食品防腐剂抑制真菌和细菌生长的功效对于确保食品的安全性和质量至关重要。这项研究旨在确定苯甲酸钠和蜡酸钠对食物真菌和细菌的疗效。四种变质真菌(Aspergillussp。,Trametes sp。,penicillium sp。,cladosporium sp。)与芒果,柠檬和橙色隔离。苯甲酸钠和山梨钾以100、200、300和400 mg/L的测试,用于针对分离的真菌和细菌的抗菌特性(s。enterica,e。大肠杆菌,K。 肺炎,proteus sp。 ,s。 金黄色,b。 Cereus,b。 枯草脂)使用倒板法。 结果表明,苯甲酸钠对所有测试的微生物有效,除了b。 蜡状和曲曲霉sp。 :两种微生物的生长在400 mg/l时抑制。 同时,发现山甲酸钾在100 mg/l的所有测试微生物中有效。 总而言之,这两种防腐剂均被证明对食物中发现的细菌和真菌有效。 此信息可作为食品制造商的指导,以便在有效水平上靶向微生物的防腐剂。 关键字:防腐剂,苯甲酸钠,索比特钾,抗菌1。 简介大肠杆菌,K。肺炎,proteus sp。,s。金黄色,b。Cereus,b。枯草脂)使用倒板法。结果表明,苯甲酸钠对所有测试的微生物有效,除了b。蜡状和曲曲霉sp。:两种微生物的生长在400 mg/l时抑制。同时,发现山甲酸钾在100 mg/l的所有测试微生物中有效。总而言之,这两种防腐剂均被证明对食物中发现的细菌和真菌有效。此信息可作为食品制造商的指导,以便在有效水平上靶向微生物的防腐剂。关键字:防腐剂,苯甲酸钠,索比特钾,抗菌1。简介
收稿日期:2024年4月8日。酶是由微生物利用植物材料作为底物产生的生物催化剂。绿色化学利用植物材料生产酶,而发酵技术则可以更大规模地生产酶。这些酶可用于食品、纺织、造纸工业和生物燃料生产。纤维素酶是一种工业酶,可以断裂植物细胞中多糖的β-1,4-糖苷键,可以由各种微生物产生。芒果废料可用于在深层发酵(SmF)中利用微生物生产生物活性化合物,例如纤维素酶。采用单因素试验和响应面法,对施氏假单胞菌(Pseudomonas stutzeri)以芒果皮为底物在SmF中生产内切葡聚糖酶和外切葡聚糖酶进行了优化。 CMCase的最适条件为底物浓度4.5%、培养96 h、接种量2.5%;FPase的最适条件为底物浓度4.5%、培养48 h、接种量0.5%。利用PBD对K 2 HPO 4 、KH 2 PO 4 、(NH 4 ) 2 SO 4 、NaCl、MgSO 4 、FeSO 4 、CaCl 2 等营养组分进行筛选,发现最显著的营养参数为FeSO 4 、MgSO 4 、(NH 4 ) 2 SO 4 。通过中心复合设计,发现在0.1%(NH4)2SO4、0.1%MgSO4和0.45%FeSO4条件下,内切葡聚糖酶产量最大,为120.112IU/mL/min;在0.1%(NH4)2SO4、0.5%MgSO4和0.05%FeSO4条件下,外切葡聚糖酶产量最大,为161.38IU/mL/min。CMCase和FPase最大活性的最适温度和pH分别为50℃和7.0。内切葡聚糖酶和外切葡聚糖酶在高达 50 °C 和 pH 7 的温度下均保持稳定。金属离子(例如 Mn 2+ 和 Cu 2+)分别激活 CMCase 和 FPase 的活性,而 Zn 2+ 和 Na + 则分别抑制 CMCase 和 FPase 的活性。关键词:施氏假单胞菌、纤维素酶、深层发酵、木质纤维素生物质引言
在过去的一年里,人工智能机器人 ChatGPT 以其回答问题、撰写论文甚至编写软件的能力让人们眼花缭乱。在美国听说过 ChatGPT 的 13 至 17 岁青少年中(大多数),19% 表示他们曾用它做作业。ChatGPT 和 Bard、Meta AI 等其他聊天机器人都基于大型语言模型(简称 LLM)。这些模型通过输入大量来自互联网的文本,经过训练可以编写出非常像人类的语言。虽然这些文本包括路易丝·格丽克的诗歌、奥普拉最爱的礼物指南和《纽约时报》的文章,但正如我们所知,它也包括虚假、诽谤、暴力和恐怖内容。作为一种安全措施,大型聊天机器人的创建者还训练它们拒绝提供不适当或有害的信息,比如如何窃取某人身份的分步说明。但训练并非万无一失,人们已经利用了聊天机器人的弱点。在本期中,物理学和资深作家 Emily Conover 深入探讨了计算机科学家为使聊天机器人走上正轨所做的努力(第 18 页)。Conover 解释说,这是一个巨大的挑战,部分原因是这些 LLM 仍然很新,科学家们才刚刚开始了解聊天机器人的弱点。随着 LLM 融入日常产品或承担地铁系统等任务,挑战将变得更大。现实情况是,尽管 LLM 有时听起来像人类,但实际上不是。在阅读 Conover 的文章时,我学到了一个有趣的术语“随机鹦鹉”。华盛顿大学的计算语言学家 Emily Bender 和同事用它来解释,虽然 LLM 可以将单词编译成散文,但他们不理解他们“写”的内容的含义,因此无法理解它是否不准确或不道德。他们只是在鹦鹉学舌。真正的鹦鹉和研究它们的科学家可能会对这个术语感到反感。鹦鹉以能够模仿人类的语言而闻名。现在,科学家们发现鹦鹉可以做更多的事情,包括使用工具、制作工具集、解决复杂的难题,有时甚至能理解我们说的话。正如特约撰稿人 Erin Garcia de Jesús 报道的那样,有些鹦鹉可以克制自己,放弃现在的小奖励,以便以后获得更大的奖励(第 24 页)。长期以来,许多科学家低估了鹦鹉——甚至认为它们很笨——因为它们的大脑不像人类和其他灵长类动物的大脑那么大、那么复杂。最近,科学家们发现,鹦鹉的小脑袋里挤满了神经元,具有与灵长类动物大脑类似的特征。鹦鹉智力的许多谜团仍有待解决,包括鸟类究竟是如何以及为什么进化出这些惊人的能力的。但找到答案最终可能有助于我们更好地理解我们自身智力的起源,以及我们遇到的其他形式的智慧。现在,我们可以惊叹于鹦鹉的欢乐、它们的美丽,以及它们似乎在用工具打开和吃海芒果时所获得的乐趣。——南希·舒特,主编
未精制(原)糖、经验证的可持续未精制(原)糖、糖蜜、用于生产乙醇的糖蜜、用于动物饲料的糖蜜、用于蒸馏的糖蜜、用于食品配料的糖蜜、结晶果糖粉、葡萄糖粉、一水葡萄糖、高果糖玉米糖浆、液体葡萄糖糖浆、麦芽糊精粉、麦芽糖浆、乙酰磺胺酸钾 (Ace-K)、阿斯巴甜、糖精钠、三氯蔗糖、木糖醇、天然玉米淀粉、改性玉米淀粉、玉米粉、天然木薯淀粉、木薯淀粉、小麦淀粉、苹果、葡萄、柠檬、芒果、橙子、梨、菠萝、番茄、芦荟、杏、香蕉、樱桃酸、番石榴、橘子、胡萝卜、椰子、百香果、桃子、椰果、草莓、碱化脂肪还原可可粉、去皮花生碎、碎花生、去壳芝麻、花生粉、花生酱/花生酱、花生、芝麻、花生碎、全澳洲坚果、无水乳脂、黄油、酪蛋白粉、全脂奶粉、全脂奶粉、脱脂奶粉、甜乳清粉、乳清蛋白浓缩物、全脂奶粉、AFP 卷、HDPE 树脂、LDPE 树脂、LLPDE 树脂、PP 树脂、PET 树脂、PS 树脂、不透明白色 r、rPET 薄片、rPET 树脂、rHDPE 树脂、rPP 树脂、玻璃瓶、纸、大卷、牛磺酸、酸度调节剂、无水柠檬酸、柠檬酸粉、一水柠檬酸、苹果酸、苹果酸粉、柠檬酸钠、柠檬酸钠粉末、抗坏血酸、抗坏血酸粉末、丙酸钙、丙酸钙粉末、谷氨酸钠、味精粉末、山梨酸钾、山梨酸钾粉末、苯甲酸钠、苯甲酸钠粉末、羧甲基纤维素 (CMC)、角叉菜胶、改性淀粉、天然玉米淀粉、果胶、木薯淀粉、黄原胶、青苹果香精、清凉薄荷、大米基葡萄糖糖浆、大麦、木薯片、可溶性干酒糟 (DDGS)、玉米、棉花、柑橘颗粒、鱼粉、大米、大豆、豆粕、大豆油、葵花籽油、硝酸铵、混合 NPK、NPK、尿素、甘蔗渣、甘蔗渣颗粒、椰子壳、椰子壳、混合热带草颗粒、秸秆颗粒、棕榈仁、稻壳、稻壳颗粒、木材颗粒、空果串、VIVE 验证的可持续生物质、传统能源、激励能源(可再生)、VIVE 或 I-REC 验证的可持续能源信用、含水乙醇、无水乙醇、燃料级乙醇、工业级乙醇、中性级乙醇、太阳能……
我很高兴我们能够发布孟加拉国农业研究委员会 (BARC) 2023-2024 年度报告。作为国家农业研究系统 (NARS) 内监督农业研究的最高机构,BARC 继续致力于加强孟加拉国的农业创新、技术传播、可持续性和粮食安全。在本报告期内,BARC 在各种研究和开发计划中取得了重大进展。我们参加国际论坛,例如在罗马举行的《国际粮食和农业植物遗传资源条约》(ITPGRFA) 管理机构第十届会议,这体现了我们对全球农业发展的承诺。在国内,制定“2041 年国家种子愿景”将有助于提高孟加拉国的长期农业生产力。主要成就包括完成了 495 个乌帕齐拉中的 420 个乌帕齐拉的分区规划、完成了 55 个乌帕齐拉的作物适宜性评估,以及制定和批准了芒果、菠萝蜜和茄子等作物的八项良好农业规范 (GAP) 协议。此外,BARC 在 2022-23 年度绩效协议 (APA) 评估中排名第二,这证明了我们对农业研究卓越的承诺。该委员会的努力还延伸到应对现代农业的紧迫挑战。可持续发展目标行动计划和第四次工业革命行动计划的研讨会将专家和利益相关者聚集在一起,以确保与国家和全球优先事项保持一致。BARC 还与特温特大学合作制定了“气候智能型农业应用的多模态遥感”培训提案,确保我们始终处于农业技术创新的前沿。我们特别为与 SRDI 合作开发国家土壤图和土壤信息系统的协调努力感到自豪。这些资源将成为政策制定者、农民和研究人员的宝贵工具。此外,我们参加国际研讨会并与国际水资源管理研究所 (IWMI) 签署谅解备忘录,反映了 BARC 积极应对水管理和盐度挑战等关键问题的方法。通过为研究和技术转让分配大量资金,以及通过成功招聘新官员,BARC 加强了支持国家农业部门的能力。展望未来,BARC 仍将坚定不移地加速农业创新,促进可持续实践,并为粮食安全和农业复原力做出贡献。我要衷心感谢我们的利益相关者、合作伙伴和 BARC 敬业的团队,感谢他们为实现这些里程碑而提供的不懈支持和合作。我祝贺并感谢科学家们,感谢官员和工作人员在报告期内的全心全意合作和开展的活动。最后,我要感谢那些参与编写和编辑 2023-2024 年度报告的人。我相信,我们将共同为孟加拉国建设一个可持续和粮食依赖的未来。
Abang, MM、Green, KR、Wanyera, NW 和 Iloba, C. (2001) 胶孢炭疽病 Penz 的表征。来自尼日利亚的山药(Dioscorea spp.)。见:Akoroda, AO 和 Ngeve, JC(编辑)《21 世纪的根类作物》。国际热带块根作物协会非洲分会第七届三年一次的研讨会论文集(1998 年 10 月),贝宁科托努。尼日利亚伊巴丹:IITA,第 613-615 页。 Abang, MM、Winter, S.、Green, KR、Hoffmann, P.、Mignouna, HD 和 Wolf, GA (2002) 在尼日利亚引起山药炭疽病的胶孢炭疽病的分子鉴定。植物病理学,51,63–71。Abang, MM、Winter, S.、Mignouna, HD、Green, KR 和 Asiedu, R. (2003) 通过分子分类学、流行病学和群体遗传学方法了解山药炭疽病。非洲生物技术杂志,2,486–496。Aime, MC、Miller, AN、Aoki, T.、Bensch, K.、Cai, L.、Crous, PW 等人 (2021) 如何发布新的真菌物种或名称,版本 3.0。IMA 真菌,12,11。Akem, CN (1999) 尼日利亚山药带的山药枯萎病及其主要原因。巴基斯坦生物科学杂志,2,1106–1109。 Akem, CN (2006) 芒果炭疽病:现状及未来研究重点。《植物病理学杂志》,5,266-273。Akinnusi, OA、Oyeniran, JO 和 Sowunmi, O. (1987) 化学处理对改良山药仓中储存的山药的影响。《尼日利亚储存产品研究所报告》,技术报告,17,69-77。Alleyne, AT (2001) 东加勒比英语岛屿的山药炭疽病 - 疾病管理的成功和研究进展。《热带农业》,75,53-57。Almeida, R. 和 Allshire, RC (2005) RNA 沉默和基因组调控。《细胞生物学趋势》,15,251-258。 Amusa, NA (1997) 尼日利亚西南部山药(薯蓣属)炭疽病症状相关真菌及其在疾病严重程度中的作用。《作物研究》,13,177-183。Amusa, NA (2000) 利用炭疽菌属有毒代谢物筛选抗炭疽病的木薯和山药品种。《真菌病理学》,150,137-142。Amusa, NA、Adegbite, AA、Muhammed, S. 和 Baiyewu, RA (2003) 尼日利亚山药病害及其防治。《非洲生物技术杂志》,2,497-502。 Amusa, NA & Ayinla, MA (1997) 噻菌灵对山药腐烂病菌活性和山药发芽的影响。国际热带植物病害杂志,14,113-120。Amusa, NA、Ikotun, T. 和 Asiedu, R. (1993) 从感染炭疽菌的山药叶中提取植物毒性物质。国际热带植物病害杂志,128,161-162。Arya, RS、Sheela, MN、Jeeva, ML 和 Abhilash, PV (2019) 大山药(Dioscorea alata L.)宿主植物对炭疽病的抗性鉴定。国际当代微生物学与应用科学杂志,8,1690-1696。Azeteh, IN, Hanna, R., Njukeng, AP, Oresanya, AO, Sakwe, PN 和 Lava Kumar, P. (2019) 感染喀麦隆山药(薯蓣属)的病毒的分布和多样性。病毒病,30,526–537。de Bakker, MD, Raponi, M. 和 Arndr, GM (2002) 非致病性和致病性真菌中 RNA 介导的基因沉默。微生物学最新观点,5,323–329。
摘要孟加拉国是一个生产许多水果的国家,但由于某些原因,这些类型的水果没有在世界其他国家出口。然而,本研究已进行了确定孟加拉国水果供应链管理系统,以找出孟加拉国水果供应链管理系统的问题,并提供政策建议,以克服孟加拉国水果供应链管理系统的问题。该研究是在孟加拉国的6个地区进行的。Rajshahi区,Dinajpur区,Tangail区,Jessore区,Narsingdi District和Dhaka District。由于Rajshaih以芒果和番石榴栽培而闻名,迪纳伊布尔以Litchi的种植而闻名,因此Narsingdi以香蕉种植而闻名,杰索尔以木瓜种植而闻名,汤塔尔以菠萝种植而闻名。是因为大多数水果都在不同的批发市场中,例如Karwanbazar,Jatrabari,Sambazar,Babubazar等。结果发现,在这种水果供应链管理系统中可能存在某些问题,例如众多利益相关者,例如农民,中小型批发商,运输商,零售商和最终客户。包装不良,处理方法和营销系统造成了高度的水果后损失。水果的运输系统并不那么科学,因此收获后损失发生。由于人造问题,运输成本也很高。价格上涨也是消费者级别的问题。农民对水果供应链管理系统,水果营销管理的了解很少。由于与区域市场缺乏联系,因此减少了农民的收入。另一方面,在孟加拉国,人们发现市场中的中介数量很少,但它们是有组织的。因此,他们主导农民,并迫使他们以较低的价格出售水果,因为农民无法将市场带回市场,因为这涉及额外的成本。不获得最佳价格的最重要原因之一是当地经纪人和批发商组织的主导地位。但是有一些经济困难和可避免的活动,以提高最终产品价格。水果供应链管理系统研究提供了对供应链结构,市场参与者,中介活动,其运营,增值,价格和利润率移动的宝贵见解。水果供应链管理具有特殊的结构和特殊需求。这项研究主要集中在对农民到各种营销中介机构到消费者的产品流量的调查。这项研究主要确定农民与消费者之间的市场中介及其在供应链中的活动。从结果中也发现,最新的收获后技术在孟加拉国也无法使用。它提供了一种了解增加业务政策,机制以及产品和信息运动的方法关键词:供应链,管理,果实,营销,农业产品,孟加拉国简介供应链管理(SCM)已被定义为1的设计,计划,执行,控制和监视供应链活动,目的是创建净值,建立竞争性的基础架构,在全球范围内利用竞争性基础设施,与需求和衡量性能同步。2 SCM实践从工业工程,系统工程,运营管理,物流,采购,信息技术和营销3以及努力寻求综合方法的领域。营销渠道在供应链管理中起着重要的作用4供应链管理系统是了解产品从生产者向客户转移的关键结构。供应链分析是一项全范围的活动,从开始到不同的生产阶段,涉及物理转型和各种生产者服务的输入,提供给最终消费者和最终处理。
acharya,narottam(b。1974),博士,科学家F,布巴内斯瓦尔生命科学研究所传染病生物学,因为他在真核生物中DNA复制领域的重要贡献和针对真菌病原体念珠菌的疫苗开发。agarwal,Vivek(b。1964),博士,FASC,FNA,FNAE,孟买印度理工学院电气工程系教授,孟买的电气工程学系,他对电力电子系统和照片伏特的贡献。 anilkumar,thapasimuthu vijayamma(b。 1961),FNAAS,FNAAS,科学家G&负责人,tiruvananthapuram的Sree Chitra Tirunal医学科学与技术研究所实验病理学系,用于开拓技术,用于隔离哺乳动物外膀胱外细胞外基质的技术,并准备了Galladder的GallAdder and for Human and velyriary for Human and Velliary。 arvind(b。 1968),Patiala旁遮普大学旁遮普大学教授兼副校长博士学位,他在量子光学和连续变量量子密码学方面的出色作品。 他与他的合作者一起在印度进行了第一个量子计算实验。 他为安全的量子通信设计了新的协议,并在科学的普及方面进行了大量研究。 他还领导Photonics Quest的光子学垂直,该计划是专门针对量子科学技术的DST计划。 asif,Mehar Hasan(b。 1973),勒克瑙CSIR民族植物学研究所的高级科学家博士学位,因为她使用生物信息学和计算生物学上的水果成熟和植物二级代谢物合成的作品。 bajaj,avinash(b。1964),博士,FASC,FNA,FNAE,孟买印度理工学院电气工程系教授,孟买的电气工程学系,他对电力电子系统和照片伏特的贡献。anilkumar,thapasimuthu vijayamma(b。1961),FNAAS,FNAAS,科学家G&负责人,tiruvananthapuram的Sree Chitra Tirunal医学科学与技术研究所实验病理学系,用于开拓技术,用于隔离哺乳动物外膀胱外细胞外基质的技术,并准备了Galladder的GallAdder and for Human and velyriary for Human and Velliary。arvind(b。1968),Patiala旁遮普大学旁遮普大学教授兼副校长博士学位,他在量子光学和连续变量量子密码学方面的出色作品。他与他的合作者一起在印度进行了第一个量子计算实验。他为安全的量子通信设计了新的协议,并在科学的普及方面进行了大量研究。他还领导Photonics Quest的光子学垂直,该计划是专门针对量子科学技术的DST计划。asif,Mehar Hasan(b。1973),勒克瑙CSIR民族植物学研究所的高级科学家博士学位,因为她使用生物信息学和计算生物学上的水果成熟和植物二级代谢物合成的作品。bajaj,avinash(b。她已经广泛努力鉴定香蕉,芒果和番茄特别参与成熟的结构和调节基因。她确定了几种药用植物中二次代谢生物合成的各种分子成分,纤维质量和稻米中砷耐受性的干旱反应性。1980),博士,法里达巴德区域生物技术中心教授,他致力于改善化学治疗药物的递送和小型生物活性分子的发展,以结合多药耐药细菌病原体。basu,anupam(b。1957),博士,FNAE,职业副校长,西孟加拉邦新镇的Nivedita University姐妹,因其在低成本嵌入式系统,辅助生活和自然语言处理方面的杰出贡献。batra,punita(b。1970),博士学位,Harish-Chandra Research Institute,Harish-Chandra Research Institute,Jhunsi,Prayagraj的Harish-Chandra Research Institute,因为她在Lie代数理论方面做出了杰出的贡献。她对仿射KAC –Moody Lie代数的几乎紧凑的真实形式进行了完整的分类,这些形式被引用了很多。Bhagavatula,Lakshmi Vara Prasad(b。1969), PhD, FASc, Director, Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, for his major contributions in the field ofsynthesis of metal nanoparticles and their assemblies and applications of soft and nano-materials BHANDARI, Rashna (b.1972),博士学位,科学家VII,Hyderabad的DNA指纹和诊断中心,是因为她在理解多磷酸盐的化学和生物学以及建立第一个研究多磷酸盐的小鼠模型方面做出了重大贡献。biswas,ranjit(b。Bhaskaran,Prasad Kumar(b。1970年),博士,海洋工程与海军建筑系教授,哈拉格布尔印度科技研究所,科技研究所,是他在北印度洋的哥斯多海洋学领域的重要贡献。1974),加尔各答印度化学生物学研究所分子遗传学科学学院高级科学家博士学位,因为他对理解SEC介导的转录调节的贡献及其对混合谱系白血病蛋白介导的白血病生成的影响。1969),加尔各答SN Bose国家基础科学基础科学中心高级教授,用于成功实施实验,理论的表述和计算机模拟之间的相互作用,并在多个领域做出了值得注意的贡献,包括深层的综合溶剂和离子液体。