生物多样性定义和类型生物多样性可以定义为不同生态系统中生物的多样性,包括陆地,海洋和沙漠环境。它还指构成生态系统并通过食物链和网络相连的各种生命形式。生物多样性对于维持地球上的生命至关重要,为人类提供了许多好处。生物多样性的类型有三种主要类型的生物多样性类型:遗传多样性,物种多样性和生态多样性。遗传多样性是指由于其遗传构成而导致的生物之间的变化,这会影响物理特征,例如人类的肤色或不同种类的农作物,例如大米或小麦。物种多样性是生态系统中发现的各种种类的种类。每个人都与同一物种中的其他人具有独特的特征,但与其他物种的特征不同。生态多样性它涵盖了各种生态系统(包括沙漠,雨林和红树林)之间观察到的多样性,这些多样性支持广泛的植物和动物生命形式。生物多样性生物多样性的重要性在维持生态稳定性方面起着至关重要的作用,通过支持各种生态系统,这些生态系统产生必不可少的服务,而没有人类生存是不可能的。生物多样性是我们生态系统的重要组成部分,它源自各种植物,包括木材,纤维,香水,润滑剂,橡胶,树脂等。国家公园和庇护所作为旅游业的来源,为许多人提供美丽和喜悦。生物多样性的保存至关重要,因为它可以保留文化遗产并允许物种自愿存在。生物多样性包括植物物种,动物物种和微生物之间的变异性,以及它们在生态系统中的相对频率。它反映了不同层面的生物的组织,具有重要的生态和经济重要性。印度的多元化生态系统:植物和动物生活丰富的挂毯,该国在全球拥有令人印象深刻的植物物种丰富度排名。两个生物多样性热点 - 西高止山脉和喜马拉雅山脉 - 是世界威胁物种的四分之一的家。印度还以各种各样的驯化作物(包括鸽子豌豆,茄子和芝麻)而闻名。该国的动物群同样令人印象深刻,有91,000多种动物物种。尽管具有丰富的生物多样性,但仍在进行保护工作,以减轻物种损失的惊人速度。积极主动的举措,例如育种计划和保护区,旨在保护印度独特的生态系统。生物多样性是指各种来源(包括陆地,海洋和沙漠生态系统)的生物学生物之间的变化。这个概念包括三个关键方面:物种多样性,遗传多样性和生态多样性。生态生物多样性强调了复杂食品链和网中动植物物种的相互联系。此外,生物多样性通过娱乐,旅游,文化丰富,教育和研究机会为社会福祉做出了贡献。生物多样性的重要性在于其对生态系统生产力,养分循环,气候调节,节水,土壤形成以及提供基本生物学资源的多方面益处。
抽象的Byebyehiv被定义为艾滋病毒/艾滋病感染者可以将其艾滋病毒负荷降低到无法检测到的水平的情况,而无需食用抗病毒药并享受健康的生活。它还指的是艾滋病毒感染的人,他们已经食用抗病毒药作为治疗方法,但不能再忍受药物的副作用,可以停止服用药物并享受无法检测到的艾滋病毒的健康生活。串行的创新是由5种类型的可食用植物的协同提取物组成的,即Mangosteen,Black芝麻,大豆,Guava和Centella Asiatica。已被证明在刺激Th1和Th17细胞方面有效,从而提高了杀手T细胞的效力,以消除Hivincted细胞。也已证明可以修复由HIV造成的端粒损害和抗病毒药的副作用。这项创新成功地帮助了6,000多名艾滋病毒/艾滋病患者增加了CD4的计数,减少病毒载荷并改善了其生活质量。2014年,第一个受HIV感染者自愿服用创新而不是抗病毒药物。他的艾滋病毒负荷在12个月内下降到无法检测到的水平,在过去的8年中,他保持健康状况良好,无法检测到的艾滋病毒。在2022年,建立了帮助艾滋病毒/艾滋病感染者实现拜拜尔夫的标准程序。在2023年11月,有24个受HIV感染的人在没有服用抗病毒药物的情况下实现了再见。其中有6种已经停止采用拜拜比夫的配方,但仍未发现艾滋病毒。在泰国实现拜拜尔夫的艾滋病毒/艾滋病患者的数量继续增加。26年服用抗病毒药3 - 30年的艾滋病毒/艾滋病患者已经能够停止服用抗病毒药,但仍然享受健康的健康,该组中的第一人已经在抗病毒药中脱离了36个月的抗病毒药。其中有3个已经停止采用拜拜尔夫公式,但仍未发现艾滋病毒。 我们现在提倡这种拜拜尔夫的创新是第一个安全有效的基于植物性的免疫疗法,以使全球艾滋病毒/艾滋病感染者受益。 在演讲中,将有有关创新行动方式的其他信息,在之前和之后以及花费的时间以及获得50个受感染者的串行的时间。26年服用抗病毒药3 - 30年的艾滋病毒/艾滋病患者已经能够停止服用抗病毒药,但仍然享受健康的健康,该组中的第一人已经在抗病毒药中脱离了36个月的抗病毒药。其中有3个已经停止采用拜拜尔夫公式,但仍未发现艾滋病毒。我们现在提倡这种拜拜尔夫的创新是第一个安全有效的基于植物性的免疫疗法,以使全球艾滋病毒/艾滋病感染者受益。在演讲中,将有有关创新行动方式的其他信息,在之前和之后以及花费的时间以及获得50个受感染者的串行的时间。
5。微生物学的简短历史,微生物的多样性,微生物生长。6。考古细菌和Eubacteria:一般帐户;超微结构,营养和繁殖;生物学和经济重要性;蓝细菌分类,显着特征和经济重要性。7。病毒:特征;病毒的隔离和纯化;化学性质,复制,病毒的传播;经济重要性。8。植物性:一般特征和引起植物疾病的作用。(例如凉鞋尖峰疾病,芝麻phyllody,小叶子的小叶子)9。免疫学:抗原和抗体的结构,抗原抗体反应,抗原抗体反应的机理。疫苗和毒素,超敏反应建议读数:1。Ainsworth,G.C。 1971。 Ainsworth和Bisby的真菌属词典。 中央迈科。 Inst。 Kew,Surrey.uk。 2。 Alexopoulus,C.J.,Mims,C.W。 和Blackwell,M。1996。 介绍性真菌学。 John Willey&Sons Inc. 3。 Bilgrami,K.S。 1982。 真菌的生理学。 Bishen Singh Mahendrapal Singh,Dehradun。 4。 Clifton,A。 1958。 细菌的简介。 McGraw-Hill Book Co.,纽约。 5。 Mandahar,C.L。 1978。 植物病毒简介。 Chand&Co。Ltd.,德里。 6。 Mehrotra,R.S。 和Aneja,R.S。 1998。Ainsworth,G.C。1971。Ainsworth和Bisby的真菌属词典。中央迈科。Inst。Kew,Surrey.uk。 2。 Alexopoulus,C.J.,Mims,C.W。 和Blackwell,M。1996。 介绍性真菌学。 John Willey&Sons Inc. 3。 Bilgrami,K.S。 1982。 真菌的生理学。 Bishen Singh Mahendrapal Singh,Dehradun。 4。 Clifton,A。 1958。 细菌的简介。 McGraw-Hill Book Co.,纽约。 5。 Mandahar,C.L。 1978。 植物病毒简介。 Chand&Co。Ltd.,德里。 6。 Mehrotra,R.S。 和Aneja,R.S。 1998。Kew,Surrey.uk。2。Alexopoulus,C.J.,Mims,C.W。和Blackwell,M。1996。介绍性真菌学。John Willey&Sons Inc. 3。Bilgrami,K.S。 1982。 真菌的生理学。 Bishen Singh Mahendrapal Singh,Dehradun。 4。 Clifton,A。 1958。 细菌的简介。 McGraw-Hill Book Co.,纽约。 5。 Mandahar,C.L。 1978。 植物病毒简介。 Chand&Co。Ltd.,德里。 6。 Mehrotra,R.S。 和Aneja,R.S。 1998。Bilgrami,K.S。1982。真菌的生理学。Bishen Singh Mahendrapal Singh,Dehradun。4。Clifton,A。1958。细菌的简介。McGraw-Hill Book Co.,纽约。5。Mandahar,C.L。 1978。 植物病毒简介。 Chand&Co。Ltd.,德里。 6。 Mehrotra,R.S。 和Aneja,R.S。 1998。Mandahar,C.L。1978。植物病毒简介。Chand&Co。Ltd.,德里。 6。 Mehrotra,R.S。 和Aneja,R.S。 1998。Chand&Co。Ltd.,德里。6。Mehrotra,R.S。 和Aneja,R.S。 1998。Mehrotra,R.S。和Aneja,R.S。1998。真菌学的介绍。新时代中间出版社。7。Webster,J。1985。真菌简介。剑桥大学出版社。8。Doelle,H.W。 和C.G,Heden1986。 应用微生物学,克鲁维尔学术出版社,伦敦。 9。 Pelczar,M.J.,Chan,ECS和Kreig,N.R。 1993。 微生物学,概念和应用。 MC Graw Hill,纽约。 10。 Ross,F.C。 1983。 入门微生物学。 Charles E. Merril。 publ。 公司,俄亥俄州哥伦布。 11。 Alexander,M.,1991。 微生物生态学。 约翰·威利(John Wiley)和儿子。 纽约。Doelle,H.W。和C.G,Heden1986。应用微生物学,克鲁维尔学术出版社,伦敦。9。Pelczar,M.J.,Chan,ECS和Kreig,N.R。 1993。 微生物学,概念和应用。 MC Graw Hill,纽约。 10。 Ross,F.C。 1983。 入门微生物学。 Charles E. Merril。 publ。 公司,俄亥俄州哥伦布。 11。 Alexander,M.,1991。 微生物生态学。 约翰·威利(John Wiley)和儿子。 纽约。Pelczar,M.J.,Chan,ECS和Kreig,N.R。1993。微生物学,概念和应用。MC Graw Hill,纽约。 10。 Ross,F.C。 1983。 入门微生物学。 Charles E. Merril。 publ。 公司,俄亥俄州哥伦布。 11。 Alexander,M.,1991。 微生物生态学。 约翰·威利(John Wiley)和儿子。 纽约。MC Graw Hill,纽约。10。Ross,F.C。 1983。 入门微生物学。 Charles E. Merril。 publ。 公司,俄亥俄州哥伦布。 11。 Alexander,M.,1991。 微生物生态学。 约翰·威利(John Wiley)和儿子。 纽约。Ross,F.C。1983。入门微生物学。Charles E. Merril。 publ。 公司,俄亥俄州哥伦布。 11。 Alexander,M.,1991。 微生物生态学。 约翰·威利(John Wiley)和儿子。 纽约。Charles E. Merril。publ。公司,俄亥俄州哥伦布。11。Alexander,M.,1991。微生物生态学。约翰·威利(John Wiley)和儿子。纽约。
摘要 从埃及土壤和食物来源中分离出产生磷脂酶 C (PLC) 的细菌。通过 16S rRNA 测序,将一种强效假单胞菌分离物鉴定为 P. fluorescens MICAYA,并以基因登录号 (OQ231499) 记录在 GenBank 中。通过 Plackett Burman 和中心复合设计进行优化发现,豆粕、酵母提取物、NaCl 和蛋黄显著提高了磷脂酶 C 的产量。Michaelis-Menten 动力学确定了 K m 为 0.4 mg/ml 蛋黄,V max 为 287 U/ml。Box Behnken 设计确定了 395 U/ml 磷脂酶 C 产量的最佳 pH 值为 6.5、0.55 g/l CaCO 3、1.05% 蛋黄、48.5°C。该磷脂酶对人成纤维细胞表现出低细胞毒性。磷脂酶 C 浓度(0.2-1 ml)可有效脱胶芝麻、洋甘菊、西洋菜、荷荷巴油、橄榄、黑种草和蓖麻油。磷脂酶 C 浓度为 0.4-0.8 ml/L 时磷脂减少率最高。荧光假单胞菌磷脂酶 C 提供了一种可生物降解的化学脱胶替代方法。总之,统计优化成功提高了磷脂酶 C 的产量。表征发现该酶在碱性 pH、中等温度和蛋黄底物下效果最佳。已证明多种植物种子油具有生物脱胶能力。进一步固定化和蛋白质工程可以提高磷脂酶 C 的工业效用。关键词:磷脂酶 C;荧光假单胞菌;培养基优化;油脱胶;酶动力学。 _____________________________________________________________________________________________________________ 1. 简介 磷脂酶 (PLC) 水解磷脂骨架中的磷酸二酯键,根据所涉及的具体磷脂种类产生 1,2-二酰基甘油和磷酸单酯。微生物磷脂酶是催化磷脂水解的酶。由于其广泛的底物特异性、温和条件下的高活性以及易于大规模生产,它们具有广泛的工业应用 [1]。磷脂酶已被用于修改磷脂结构以生产特定脂质、脱胶植物油、合成化妆品成分、改善面团的烘焙特性、产生风味和香气等 [2]。真菌、细菌和酵母等微生物来源的磷脂酶比植物和动物来源具有优势,因为它们可以通过发酵以高产量和纯度生产 [3]。最有效的真菌生产者是黑曲霉、环青霉和少根根霉。黑曲霉可产生高产量的磷脂酶 A1 和 A2 [4]。固定化黑曲霉磷脂酶 A2 对植物油的重复脱胶表现出良好的稳定性 [5]。最常见的细菌生产者是假单胞菌和芽孢杆菌。铜绿假单胞菌和蜡状芽孢杆菌产生胞外磷脂酶 C [6,7]。枯草芽孢杆菌分泌磷脂酶 A2,并且已经通过基因改造以提高产量。在稳定期,荧光假单胞菌可以产生各种具有抗菌潜力的次级代谢物,例如氢氰酸 (HCN)、绿脓杆菌素 (Pit) 和 2,4-二乙酰间苯三酚 (Phi),以及铁螯合代谢物 [8]。绿脓杆菌素、水杨酸和绿脓杆菌素。蛋白酶、磷脂酶 C 和脂肪酶是从各种环境中分离的荧光假单胞菌菌株产生的三种细胞外酶的例子 [9]。在稳定生长期测定的磷脂分解活性水平最高,表明生长阶段依赖机制负责诱导这些酶。此外,酵母生产者是隐球菌,它被固定化并用于大豆油脱胶。 Candida rugosa 是一种脂肪酶和磷脂酶生产者,固定化 C. rugosa 脂肪酶用于结构化脂质的生产 [10]。微生物磷脂酶,如磷脂酶 A1、A2、C 和 D,在脱胶、油脂酯交换、卵磷脂生物合成和废水处理应用中表现出良好的应用前景 [11]。它们的酶水解导致磷脂部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和表征,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。