食物过敏是全球一个主要的健康问题。现代繁殖技术,例如通过CRISPR/CAS9进行基因组编辑,有可能通过靶向植物中的过敏原来减轻这种情况。这项研究介绍了主要的过敏原胸罩J i,这是2S白蛋白类的种子储存蛋白,在异形棕色芥末(Brassica Juncea)中。印度基因银行加入(CR2664)和德国品种Terratop的副卵形植物使用具有多个单一指南RNA的二进制载体的农业杆菌进行了转化,以引起大型删除或两种Bra J I or词的大型删除或Frameshift突变。总共获得了49 T 0线,最多3.8%的转化效率。在胸罩J ib等位基因中,四行的删除为566,最高790 bp。在18条Terratop t 0线中,有9条带有靶向区域的indels。从16个分析的CR2664 t 0行,14行持有的indels和3个具有四个Bra J I等位基因突变。CRISPR/CAS9引起的大多数突变是t 1后代遗传的。在一些编辑的线中,种子的形成和生存能力降低,种子显示出胚胎的早熟发育,导致滴虫已经破裂。使用新开发的BRA J I特异性抗体进行免疫印迹,显示了所选系的种子提取物中要降低或不存在的胸罩J I蛋白的量。从芥末中去除偏远的决定因素是迈向开发更安全的食品作物的重要第一步。
癌症的第一个描述是在埃及纸莎草纸上发现的,其历史可追溯至公元前1600年。直到19世纪,它被认为是一种无法治愈的疾病,当时手术清除通过麻醉,改进的生物医学技术和组织学控制更有效。在1950年之前,手术是最优选的治疗方法,但是,在1960年之后,放射治疗开始用于控制局部疾病。然而,随着时间的流逝,人们意识到手术,辐射或两者结合都不能充分控制转移癌症,并且为了有效治疗,需要治疗才能到达人体的每个器官。因此,当前治愈癌症的努力一直集中在药物,生物分子和免疫介导的疗法上。在1940年代的氮芥末引入被认为是
环磷酰胺是一种细胞毒性氮芥末衍生物,广泛用于癌症化学疗法中,通过在癌细胞中交联遗传物质来起作用,可防止DNA解开和复制,从而防止细胞分裂(1,2)。在某些剂量下,环磷酰胺还可以通过T细胞介导的机制增强抗肿瘤免疫反应。环磷酰胺被确定为优先癌症医学,因为它具有广泛的儿童癌症适应症,并且有机会开发出降低毒性的配方,在较低强度下,在非液体口服剂量配方中更容易滴定较低的毒性,这也有可能在采购方面具有更大的动力(4)。值得注意的是,患者的护理人员的胶囊胶囊和片剂处理和操纵可能会引起危险风险。一种儿童友好的配方在低收入国家(LMIC)中很有用,在姑息磷酰胺中,在姑息治疗计划中有明显的用法。
指导•生产肥料,生长的培养基和生物修复产品:i)通过新鲜或干植物材料的分解; ii)处理干燥的植物材料; iii)来自加工植物产品的副产品,包括但不限于油种子粉(例如辣椒粉,棉花餐,芥末餐,印em餐,棕榈仁,大豆餐和蒸馏剂干谷物),棉花划分的副产品,果壳和地面坚果贝壳。•生长媒体的示例是蘑菇壳,加工后的泥炭盆,颗粒,碟片和插头。•用于包含可行微生物的产品; i)可以在HSNO批准登记册上搜索微生物的新生物体状态。如果未在HSNO批准登记册上列出微生物,则进口商可以联系EPA新生物体小组以获取进一步的建议。ii)可以在新西兰官方害虫注册
他的年度报告是2023 - 24年的Bari活动和成就的全面概述。顾名思义,它是每年生产的,其中包括由前一年在Bari的各种农作物研究中心和研究中工作的不同学科的科学家进行的实验的主要发现。 主要的研究领域包括各种农作物的多样性开发,例如块茎(马铃薯,地瓜,芳香族等)。顾名思义,它是每年生产的,其中包括由前一年在Bari的各种农作物研究中心和研究中工作的不同学科的科学家进行的实验的主要发现。主要的研究领域包括各种农作物的多样性开发,例如块茎(马铃薯,地瓜,芳香族等)。),油料种子(芥末,菜籽,花生,向日葵等。),园艺作物(水果,蔬菜和装饰物),香料(洋葱,大蒜,辣椒,姜黄,姜等)和谷物(大麦,燕麦,小米等)。研究领域还包括改善农作物系统,农作物,土壤,水和灌溉管理,植物营养,疾病和昆虫管理,植物生物技术研究,后处理后处理,生产经济学,低成本农业机械的发展以及农场管理。此外,在干旱和盐水条件下,还引起了人们对与气候变化有关的适应和缓解与气候变化有关的适应和缓解。我们的科学家还从事开发适当且可持续的技术,以缩小当前食品需求与其在该国生产之间的差距。
相关的设备,组件和材料,如下:“生物剂”或放射性材料选择或修饰,以提高其在人类或动物的伤亡中的有效性,降解设备或破坏农作物或环境; b。化学战(CW)代理,包括:1。CW神经剂: O-烷基(等于或小于C10,包括环烷基)烷基(甲基,N-丙基或异丙基) - 磷酸氟化物,例如:SARIN(GB):O-异丙基甲基甲基磷酸氟甲酯(CAS 107-44-8);和SOMAN(GD):O pinacolyl甲基膦氟氟甲酯(CAS 96-64-0); b。 O-烷基(等于或小于C10,包括环烷基)N,N-二烷基(甲基,乙基,N-丙基或异丙基)磷酸透明透明盐,例如:TABUN(GA):O-乙基N,N,N-二甲基磷酸羟酯(CAS 77-81-6); c。 O-烷基(H或等于或小于C10,包括环烷基)S-2-二烷基(甲基,乙基,N-丙基或异丙基或异丙基) - 氨基乙基烷基(甲基,N-乙基,N-丙基或异丙基或异丙基)磷酸氨基酚和相应的烷基化和相应的烷基化和固定盐:磷硫硫酸盐(CAS 50782-69-9); 2。CW囊泡剂:a。硫芥末,例如:1。2-氯乙基氯甲基硫化物(CAS 2625-76-5); 2。 bis(2-氯乙基)硫化物(CAS 505-60-2); 3。 bis(2-氯乙基)甲烷(CAS 63869-13-6); 4。 1,2-双(2-氯乙基)乙烷(CAS 3563-36-8); 5。 1,3-双基(2-氯乙基)-n-丙烷(CAS 63905-10-2); 6。 1,4-双基(2-氯乙基)-n丁烷(CAS 142868-93-7); 7。 1,5-双基(2-氯乙基硫醇)-n-戊烷(CAS 142868-94-8); 8。 2-氯维尼德氯苯胺(CAS 541-25-3); 2。2-氯乙基氯甲基硫化物(CAS 2625-76-5); 2。bis(2-氯乙基)硫化物(CAS 505-60-2); 3。bis(2-氯乙基)甲烷(CAS 63869-13-6); 4。1,2-双(2-氯乙基)乙烷(CAS 3563-36-8); 5。1,3-双基(2-氯乙基)-n-丙烷(CAS 63905-10-2); 6。1,4-双基(2-氯乙基)-n丁烷(CAS 142868-93-7); 7。1,5-双基(2-氯乙基硫醇)-n-戊烷(CAS 142868-94-8); 8。2-氯维尼德氯苯胺(CAS 541-25-3); 2。bis(2-氯乙基甲基甲基)醚(CAS 63918-90-1); 9。bis(2-氯乙基乙基)醚(CAS 63918-89-8); b。路易斯特人,例如:1。tris(2-氯环烯基)砷(CAS 40334-70-1); 3。bis(2-氯环烯基)氯氨酸(CAS 40334-69-8); c。氮芥末,例如:1。HN1:双(2-氯乙基)乙胺(CAS 538-07-8); 2。HN2:双(2-氯乙基)甲胺(CAS 51-75-2); 3。HN3:Tris(2-氯乙基)胺(CAS 555-77-1);HN3:Tris(2-氯乙基)胺(CAS 555-77-1);
自然生态系统转化为人类修饰的景观(HML)是陆地生态系统中生物多样性丧失的主要驱动力,尤其是大型捕食者的丧失。他们的灭亡会大大改变食物网,有时会释放出较小的食肉动物,例如野马科的成员。尽管如此,即使是小食肉动物也必须适应人类对候对食物的可用性的影响,从而改变其资源使用。在这种情况下,在农业栖息地种植的农作物会深刻影响社区集会。在这里,我们对2017年7月至2018年8月之间收集的75个日本鼬鼠(Mustela Itatsi)Scats进行了饮食分析,以确定其季节性饮食习惯,该景观由日本东部西部帕迪田(Rice Paddy Fields)占据主导地位。从春季到秋天,日本鼬鼠主要消耗(半)水生和限制动物分类群,特别是侵入性小龙虾(Procambarus clarkii),昆虫(例如,鞘翅目和odonata)以及成年的阿努拉(Anurans)以及所有这些都是易于使用的宠物。在冬季,japanese鼬鼠主要消耗了果实(例如,无花果,五库里卡),由于干燥的稻田和灌溉沟渠中动物猎物缺乏动物猎物的稀缺,因此在SCAT的组合含量相对减少。尽管节俭在芥末饮食中是不寻常的,但我们的发现表明,日本的奶奶酪能够自适应营养可塑性,使它们能够在稻田栖息地中生存在非典型的资源条件下。为了加强在日本保护Mustela Itatsi的广泛努力,我们建议稻米单一培养物的多样化,并鼓励冬季洪水增加水生和半养生动物猎物的可用性。
Brassica Juncea(印度芥末)是一种至关重要的油料作物,非常容易受到菌核病菌根菌腐烂的影响,这是一种严重影响农作物产量和质量的病原体。这项研究评估了种子启动与生物控制剂的作用,包括枯草芽孢杆菌,Trichoderma viride及其组合对两种在田间条件下的繁殖芽孢杆菌(Rh30和Varuna)的两种。病原体接种,并在接种后10和20天(DAI)评估形态学,生化和与产量相关的参数。结果表明,枯草芽孢杆菌和T. viride的联合应用显着改善了植物高度,根和芽生物量以及茎直径。生化分析显示,二级代谢产物(如类黄酮,酚类和抗坏血酸)以及抗氧化酶的活性增加,包括过氧化氢酶(CAT),多酚氧化酶(PPO)(PPO)和过氧化物酶(POX)。这些变化与减少疾病症状相关,例如较短的茎病变长度,较少的菌根和茎损伤百分比降低。此外,在用生物控制剂处理的植物中,可以显着改善诸如每植物的小硅藻的数量,种子大小和千分光的属性属性。联合治疗的表现优于枯草芽孢杆菌或T. viride的个体应用,证明了其在降低疾病严重程度和提高产量方面的效果。这些发现提供了用于管理油料种子作物生物胁迫的化学方法的可持续替代方法。这项研究强调了将生物控制剂整合到农作物管理实践中的潜力,以提高对硬核腐烂的耐药性,并提高Juncea的生产力。