工艺图功能 % Cu 描述材料最终厚度第 1 层信号/GND 90 顶层铜 1.90 Meg 7N 1078 预浸料 70% 3.50 第 2 层电源 90 铜 1.00 Meg 7N 1078 预浸料 70% 3.50 第 3 层信号/GND 90 铜 1.00 Meg 7N 1078 预浸料 70% 3.50 第 4 层信号 25 铜 1.50 Meg 7N 1078 预浸料 70% 3.50 第 5 层 GND 95 铜 0.65 Meg 7N 1035 芯 3.90 第 6 层信号 25 铜 0.65 Meg 7N 1078 预浸料 70% 3.50 第 7 层 GND 95 铜 0.65 Meg 7N 1035 芯线 3.90 第 8 层信号 25 铜 0.65 Meg 7N 1078 预浸料 70% 3.50 第 9 层接地 95 铜 0.65 Meg 7N 1035 芯线 3.90 第 10 层信号 25 铜 0.65 Meg 7N 1078 预浸料 70% 3.50 第 11 层接地 95 铜 0.65 Meg 7N 1035 芯线 3.90 第 12 层电源 90 铜 0.65 Meg 7N 1078 预浸料 70% 3.50 第 13 层接地 95 铜 0.65 Meg 7N 1035 芯线 3.90 第 14 层电源 90 铜 0.65 Meg 7N 1078 预浸料 70% 3.50第 15 层 GND 95 铜 1.00 Meg 7N 1078 预浸料 70% 4.10 第 16 层 电源 90 铜 1.00 Meg 7N 1078 预浸料 70% 3.50 第 17 层 GND 95 铜 0.65 Meg 7N 1035 芯线 3.90 第 18 层 电源 90 铜 0.65 Meg 7N 1078 预浸料 70% 3.50 第 19 层 GND 95 铜 0.65 Meg 7N 1035 芯线 3.90 第 20 层 电源 90 铜 0.65 Meg 7N 1078 预浸料 70% 3.50 第 21 层 GND 95 铜 0.65 Meg 7N 1035 芯线 3.90 第 22 层 电源 90铜 0.65 Meg 7N 1078 预浸料 70% 3.50 第 23 层 GND 95 铜 0.65 Meg 7N 1035 芯 3.90 第 24 层 信号 25 铜 0.65 Meg 7N 1078 预浸料 70% 3.50 第 25 层 GND 95 铜 0.65 Meg 7N 1035 芯 3.90 第 26 层 信号 25 铜 0.65 Meg 7N 1078 预浸料 70% 3.50 第 27 层 GND 95 铜 1.50 Meg 7N 1078 预浸料 70% 3.50 第 28 层 RF 10 铜 1.00 Meg 7N 1078 预浸料 70% 3.50 第 29 层 GND 95 铜1.00 Meg 7N 1078 预浸料 70% 3.50 层 30 信号 25 底部铜 1.90
当回收显热能和潜热能是当务之急,但又不需要焓轮的维护时,带有焓芯热交换器的 VPRC 是一个极好的选择。焓芯热交换器的排气传输比 (EATR) 为 0%,由 AHRI 1060 确定,并且可以安全处理累积的冷凝水而不会受到霜冻损坏。
阿纳托利·扎夫多维耶夫 1, 安德烈·克拉帕图克 1, 蒂埃里·博丹 2, 埃里克·麦克唐纳 3, 达内什·莫汉 4, 若昂·奥利维拉 5, 亚历克斯·加伊沃隆斯基 1, 瓦列里·波兹尼亚科夫 1, 金亨燮 6, 弗朗索瓦·布里塞特 2, 马克西姆·霍赫洛夫 1, 马克·希顿 7, 马西莫·罗甘特 8, 米科拉·斯科里克 9, 德米特里·韦德尔 10, 罗曼·科津 1, 伊利亚·克洛奇科夫 1, 斯维亚托斯拉夫·莫特鲁尼奇 1
当回收显热能和潜热能是当务之急,但又不需要焓轮的维护要求时,带有焓芯热交换器的 VPRC 是一个极好的选择。焓芯热交换器的排气传输比 (EATR) 为 0.5%,由 AHRI 1060 确定,可以安全处理累积的冷凝水而不会受到霜冻损害。
工具:RO1200材料与许多工具系统兼容。选择是否使用圆形或开槽的引脚,外部或内部固定,标准或中心线(多行)工具,以及pre ded pred vs.后冲孔将取决于电路设施的功能和偏好以及最终的注册要求。一般而言,开槽的销钉,中心线工具格式和后口气的打孔将满足大多数需求。无论采用哪种方法,都可以在工具孔周围保留铜。一般而言,建议只有在使用36或72微米铜箔的加工芯上,只有在加工芯上涂抹芯时,建议使用18微米铜箔在核心两侧的工具孔周围保持铜。
网状芯的渗透性对于各种应用都很重要,包括两相传热。然而,人们对单层、独立式网状芯(两侧都有液气界面)的渗透性的理解有限。本文提出了一种新颖且更简单的方法来确定独立芯的渗透性并将其应用于代表性网格。该方法包括通过升高来修改毛细管压力,并同时测量渗透性以确定渗透性-毛细管压力关系。当应用于经过表面清洁的平纹铜网时,发现渗透性随着去离子水的毛细管压力的增加而降低。本文提出了一种维度分析,以将此数据推广到具有类似编织和流体的其他网格尺寸。基于达西定律与测量数据拟合的解析函数的结合,对网格在应用中的行为进行了建模,并根据获得的毛细管压力-渗透率关系进行了参数研究,以研究液体在不同驱动压力、输送长度和液体粘度下通过网格的表观速度。这项研究为网格芯的输送特性提供了宝贵的见解,并可能应用于电子冷却、电化学设备和流体净化技术等领域。
芯吸和泵送 多年来,多孔金属已演变成许多难以解决的工艺问题。其中之一就是泵送和/或芯吸的使用。Mott 的多孔烧结金属是从航空航天到消费用途的许多应用的完美选择。 芯吸 具有非常均匀孔隙率的多孔金属结构将通过多孔金属结构将液体从流体储存器泵送液体并将液体施加到所需位置。由于均匀的孔分布和孔径,毛细管粘附发生在多孔结构内。 优点 无活动部件 长免维护使用寿命 清洁度 提供均匀的流动 连续操作 高强度、抗冲击 耐高温 过滤,为应用提供清洁流体 烧结金属用于液体冷却系统中的泵 多孔金属也可用于封闭的再循环系统。多孔材料在此系统中充当主泵。该系统的工作原理与芯吸相同,不同之处在于系统是完全封闭的。该系统的泵头压力可高达 30” H2O,具有这种性能的多孔金属适用于各种冷却应用。冷却应用航空航天卫星宇航员太空服冷却微电子电力电子开关整流器无功元件变压器