目标和产品 本指南文件介绍了在高可靠性应用中使用先进塑料球栅阵列 (BGA) 和芯片尺寸 BGA (DSBGA) — 商用现货 (COTS) — 封装技术和组件的建议。最先进和高密度的 BGA 采用倒装芯片球栅阵列 (FCBGA) 配置,输入/输出 (I/O) 超过 2000 个,间距为 1 毫米。间距小于 1 毫米(低至 0.3 毫米)的 DSBGA 通常最多有几百个 I/O。由于更大芯片的产量挑战和节点缩小的高成本,业界已转向实施系统级封装 (SiP)。先进的 SiP 集成芯片技术(称为 Chiplet)是电子封装技术的下一个范式转变。本指南简要讨论了先进的 COTS 封装技术趋势,并提供了两个测试评估示例;一个针对 BGA,另一个针对 DSBGA。对于这两个类别,测试结果涵盖了关键工艺问题、质量指标和质量保证 (QA) 控制参数,随后提供了全面的测试数据以解决热循环可靠性和局限性。最后,报告摘要中包括了从这些评估中吸取的经验教训得出的关键建议。针对低风险灌注航天应用,给出了 COTS BGA/DSBGA 封装技术的具体建议,同时考虑了任务、环境、应用和寿命 (MEAL) 要求。
良好的热系统设计对于确保适当的系统性能,可靠性和寿命至关重要。如图1。不同系统级别的热因子“上面”,PCB设计(层,垫尺寸。)和空气流是影响散热的主要因素。在组件级别上,许多因素都会影响热阻力,例如包装类型,包装材料,芯片尺寸,功率耗散等。”图2。传热的形式。”显示了设备级别的热量耗散路径的示意图。在组件水平上进行传热的主要机制是对流(通常是通过空气流从包装表面到周围环境的热传递)和传导(从模具表面通过粘结线和铅框从模具表面和铅框架传递到PC板)。通过辐射(电磁能传递)进行的传热通常可以忽略不计于闪存设备。在Macronix用于闪存的塑料包中,通常5〜20%的热量消散是通过对流的包装顶部通过包装的顶部,而其余的80〜95%是通过PCB通过传导。”图3。A)。热电阻与层流气流”,图3。B)。热电阻与芯片尺寸”和”图3。C)。热阻力与PCB设计“显示了各种因素对热阻力的影响。图2。传热形式。
本文提供了基于AES的LUT和逻辑门比较S-Box Galois场方法,其芯片尺寸减小和延迟减少,这可以增强性能。数据安全是数字时代的基本要求。现代加密加密技术对于建立安全的通信至关重要。高级加密Satandard(AES)被广泛认为是加密字段最强的加密技术。使用Logic Gates Galios Field Carth Chare操作的三个阶段管道过程,以减少S-Box AES-256的延迟。因此,相应地增加了速度。此外,比较了建议和现有方法的结果。通过Virtex-5 FPGA设备模拟和系统的拟议批准以及Xilinx 14.7软件中的Verilog Code中的设计。
这是人类历史上规模最大的制造业。高度复杂的半导体供应链是周期性的和相互关联的,因此很难理清。在过去的几十年里,半导体供应链已经简单地分为三个主要生产步骤,专注于性能和能效创新,同时降低成本和缩小芯片尺寸。首先,工程师设计芯片并精心规划如何构建其电子电路。其次,通过光刻等工艺将芯片设计制造到洁净室中的硅晶片上,微小电路被一层层构建起来。最后,将制造好的芯片从晶片上切下来,封装在保护外壳中,并经过严格测试以确保功能,然后才能集成到电子设备中(参见 CSS 研究)。
按照 MIL-PRF-38534 的所有规定,使用 DLA Land and Maritime-VQ 合格材料和制造施工技术制造、组装和测试的 K 级、H 级、G 级、E 级或 D 级产品,可视为符合此处列出的相应产品保证等级。此列表中包含的信息反映了特定测试样品的一般材料和制造技术。为了保护制造商的专有工艺和材料,仅列出通用工艺和材料。用户必须联系制造商以获取有关特定材料(例如环氧树脂、吸气剂、焊料类型)或工艺细节的任何详细信息。未列出的工艺和材料可能被视为合格,因为与用于认证的工艺和材料相似(例如,不同的电线、封装或芯片尺寸)。有关认证限制的基准,请参阅 MIL-PRF-38534 的附录 E,l 级,主要变更段落。
摘要 采用 70 nm GaAs mHEMT OMMIC 工艺 (D007IH) 设计了四级 K 波段 MMIC 低噪声放大器 (LNA)。基于 Momentum EM 模拟结果,四级 LNA 实现了 29.5 dB ±1 dB 的增益、低至 1 dB 的噪声系数 (NF) 和整个波段优于 -10 dB 的输入回波损耗。LNA 芯片尺寸为 2500 µm x1750 µm。由于选择源阻抗以最小化实现输入匹配网络所需的元件数量,因此设计工作流程可以改善 LNA 的 NF 和输入回波损耗。所提出的电路的输入匹配网络由与有源器件的栅极串联的单个锥形八角形电感器组成,从而对第一级实现的 NF 影响很小,并显著改善 LNA 的输入回波损耗。
目标是开发一种先进的传感工具,以提高半导体芯片检查的精度,减少芯片故障,提高能源效率。量子钻石微芯片成像仪类似于磁共振成像(MRI),可对半导体芯片进行非侵入式和非破坏性成像,克服了传统方法在芯片尺寸减小时检测异常的局限性。它利用钻石中的氮空位中心以及专门的硬件和软件,大大增强了故障分析、设备开发和优化过程。它还可以可视化多层芯片中的三维电荷流,以实现高级缺陷识别。它将在微电子、生物和地质成像以及磁场精细成像等领域得到广泛应用。
本教程将帮助分析师就背面减薄和抛光要求做出决策,并有望消除许多相关的误解和假设。许多人都听过我们这个领域的分析师和科学家将样品制备称为“黑魔法”,这是因为他们不了解样品制备的复杂性。这导致人们忽视了模块、封装、芯片尺寸和材料成分的几乎无限组合,包括金属合金、环氧树脂和填料、玻璃、芯片粘接、玻璃纤维、陶瓷、硅树脂等。由于各层热膨胀系数 (CTE) 不匹配,以及需要以相同的预期表面光洁度抛光不同的界面,情况变得更加复杂。去除很大一部分芯片基板通常会影响封装的稳定性。正确规划整个背面分析策略是一项要求,但这项要求经常被忽视,从而导致项目失败,正如后面章节中所示。
在集成电路的大部分历史中,片上互连线被认为是二等公民,只有在特殊情况下或进行高精度分析时才需要考虑。随着深亚微米半导体技术的引入,这种情况正在发生快速变化。由互连线引入的寄生效应表现出与晶体管等有源器件不同的缩放行为,并且随着器件尺寸的减小和电路速度的提高而变得越来越重要。事实上,它们开始主导数字集成电路的一些相关指标,如速度、能耗和可靠性。由于技术的进步使得生产越来越大的芯片尺寸在经济上可行,这导致互连线的平均长度和相关的寄生效应增加,这种情况更加严重。因此,仔细深入地分析互连线在半导体技术中的作用和行为不仅是可取的,而且是必要的。