菊花含量,东亚本地的一种物种众所周知,是耕种的菊花的祖细胞之一,该物种以其观念和药用价值而生长。先前关于菊花的基因组研究在分析该植物谱系时,很大程度上忽略了质体基因组(质体)和线粒体基因组(有丝分裂基因组)的动力学。在这项研究中,我们测序并组装了二倍体和四倍体C的质体和有丝分裂组。芳香。我们使用了来自27种具有质体和有丝分裂组完整序列的数据,以探索细胞器基因组之间序列演化的差异。二倍体和四倍体C中的细胞器基因组的大小和结构通常相似,但四倍体C. indimum和C. indimum var。芳香族在有丝分裂组中包含独特的序列,这些序列还包含先前未描述的开放式阅读框(ORF)。跨菊花有丝分裂组的结构变化很大,但是从质体转移到有丝分裂基因组的序列得到了保存。最后,有丝分裂基因组和质子基因树之间观察到的差异可能是这两个基因组中基因之间序列演化速率差异的结果。总共提出的发现大大扩展了研究菊花细胞器基因组进化的资源,并可能在将来可以应用于保护,育种和基因库。
研究文章 eISSN: 2306-3599; pISSN: 2305-6622 棉花中的基本五半胱氨酸基因家族:综合基因组特征和盐胁迫响应基因表达谱分析 Laviza Tuz Zahra 1 , Fariha Qadir 1 , Abdul Hafeez 2 , Muhammad Saleem Chang 2 , Maqsood Ahmed Khaskheli 3 , Madan Lal 2,7 , Mehreen Fatima 8、Sehar Fatima 1、Ali Hamza 1、Ayesha Khalid 6、Sadia Shehzad 1、Annas Imran 1、Rida Tabbusam 1、Waseem sarwar 1、Aleena Farooq 4、Uswa Maryam 5、Muhammad Usama Javed 1、Pakeeza Aslam 1、Aliza Sarwar 1、阿里侯斯奈因·阿尔维 1、萨尔曼·阿里·苏海尔9、Ghulam Rasool 1 和 Abdul Razzaq 1* 1 拉合尔大学分子生物学与生物技术研究所,巴基斯坦 2 信德农业大学 Umerkot 分校农学系,信德省巴基斯坦 3 贵州大学农学院植物病理学系,贵州贵阳 550025,中国 4 拉合尔政府学院大学,拉合尔,巴基斯坦 5 国家生物技术和遗传工程研究所,费萨拉巴德,巴基斯坦 6 拉合尔女子大学,拉合尔,巴基斯坦 7 中国农业科学院烟草研究所,山东省青岛 266101,中国 8 联合健康科学学院; 9 拉合尔大学土木工程系,巴基斯坦 *通讯作者:biolformanite@gmail.com
棉酚是棉花 ( Gossypium hirsutum L.) 中常见的一种萜醛,对植物抵御害虫和病原体至关重要。然而,其固有毒性限制了棉籽在食品和饲料中的使用。这项研究重点验证了 (+)-delta- 杜松烯合酶基因家族的表达模式,该基因家族在棉酚的生物合成中起着至关重要的作用。我们的目标是利用这些信息指导基因组编辑策略,以降低棉籽中的棉酚水平。我们使用定量实时 PCR (qRT-PCR) 分析了 32 个 (+)-delta-杜松烯合酶基因在胚珠和叶片中的表达,涵盖六个发育阶段,从开花后 (DPA) 20 到 45 天,每隔五天一次。我们的结果显示,无论处于哪个发育阶段,都有 10 个基因在胚珠中表达。其中,六个基因:Gohir.A04G023700、Gohir.D05G363800、Gohir.A08G087000、Gohir.D05G363900、Gohir.D05G364000 和 Gohir.D05G364300,在各个阶段始终表现出明显更高的表达水平。值得注意的是,Gohir.D05G363900、Gohir.D05G364000 和 Gohir.D05G364300 在所有阶段都表现出略高的表达水平,使其成为靶向基因组编辑的合适候选基因。这些发现为 (+)-delta- cadinene 合酶基因家族的表达动态提供了宝贵的见解,并确定了未来基因组编辑实验的潜在靶基因,旨在通过降低棉酚含量来提高棉籽的利用率。
叶形被认为是作物育种中最重要的农艺性状之一。然而,棉花叶片形态发生的分子基础仍然很大程度上未知。在这项研究中,通过使用叶片向上卷曲的天然棉花突变体 cu 进行遗传作图和分子研究,成功鉴定出致病基因 GHCU 是叶片扁平化的关键调控因子。使用 CRISPR 敲除棉花和烟草中的 GHCU 或其同源物会导致叶片形状异常。进一步发现,GHCU 促进 HD 蛋白 KNOTTED1-like (KNGH1) 从近轴区域到远轴区域的运输。GHCU 功能的丧失将 KNGH1 限制在近轴表皮区域,导致近轴边界的生长素反应水平低于远轴区域。生长素分布的这种空间不对称产生了 cu 突变体向上卷曲的叶片表型。通过单细胞 RNA 测序和时空转录组数据分析,证实生长素生物合成基因在近轴和远轴表皮细胞中不对称表达。总体而言,这些发现表明 GHCU 通过促进 KNGH1 的细胞间运输,从而影响生长素反应水平,在叶片扁平化的调控中起着至关重要的作用。
化学氮肥可以维持作物生产力,但是化学氮肥过度使用会导致经济成本和环境污染。减少氮肥使用使用的一种方法是将氮酶生物合成途径转移到非乳状植物中。Fe蛋白是氮酶的两个结构成分。NIFB是一个关键的成熟酶,它催化了结合和减少n 2的氮酶Femo-Concactor的生物合成中的第一个投入步骤。NIFB,NIFH,NIFD和NIFK的表达对于产生能够固定大气N 2的植物至关重要。在这项研究中,Paenibacillu Polymyxa Wly78的四个基因(NIFB,NIFB,NIFD和NIFK)通过CRE/LOXP重组系统组装在植物表达vector PCAMBIA1301中,从而产生重组表达vector PCAM- bia1301301-nifbhdk。然后,使用tumefaciens介导的转化将表达载体中携带的四个NIF基因共同融入了高地棉R15。通过PCR和RT-PCR选择了T 3代的纯合转基因棉线B2,B5和B17。QRT-PCR显示,NIFB,NIFH,NIFD和NIFK在类似水平的转基因棉中共表达。Western印迹分析表明,NIFB,NIFH,NIFD和NIFK是在转基因棉中共同生产的。棉花中四种关键的NIF蛋白(NIFB,NIFH,NIFD和NIFK)的共表达是工程氮酶生物合成途径的重要一步。
B 细胞淋巴瘤是一种源自免疫系统 B 细胞的癌症。开发有效的创新型 B 细胞淋巴瘤疗法一直是研究的重点。1,2 在此背景下,绿茶 (Camellia sinensis) 中发现的天然化合物(如 Thaflavine)通过与 BCl2 凋亡调节剂相互作用,显示出作为 B 细胞淋巴瘤抑制剂的潜力。3,4 计算机模拟方法已用于研究 Thaflavine 和 BCl2 之间的分子相互作用,从而深入了解抑制癌细胞生长的潜在机制。更深入地了解 Thaflavine 作为 B 细胞淋巴瘤治疗剂的潜力,可以为开发更有效、更有针对性的新疗法铺平道路,从而改善治疗结果和患者预后。5,6
高地棉花(Gossypium hirsutum L.)占全球棉花生产的90%以上,为全球纺织品和油料种子工业提供了天然材料。提高高地棉花产量的一种策略是增加了杂种的采用。然而,棉花的灭绝是非常耗时的,棉花雄性不育的遗传来源受到限制。在这里,我们回顾了已知的植物核男性不育(NMS)的生物化学模式,通常称为植物遗传性不育(GMS),并将其表征为四组:转录调控,剪接,脂肪酸的运输和加工以及糖的运输和加工和加工。我们已经探索了30个单子叶植物(玉米,大米和小麦)和三个双子(拟南芥,大豆和番茄)的30 gms基因的蛋白序列同源性。我们已经分析了单子植物和双子DICOT GMS基因之间的进化关系,以描述这些基因鉴定的相对相似性和相关性。五个是较低的源物种,四种是单子叶植物独有的,五核,在所有物种中有14个高度保守,而另外则有两个。使用此源,我们已经在高地棉质基因组中鉴定了23个潜在的候选基因,用于开发用于杂交棉花育种的新雄性无菌种质。将基于同源性的研究与基因组编辑结合使用可以允许发现和验证GMS基因,这些GMS基因以前在棉花中未观察到多样性,并且可能允许在杂化棉产生中使用理想的雄性无菌突变体。
总结花粉壁外部为雄性配子体提供了一个保护层,并且主要由孢子囊素组成,其中包括脂肪酸衍生物和酚类。但是,外部外部的生化性质知之甚少。在这里,我们表明,在没有脊柱花粉(GHNSP)中突变的棉花1355a导致外部形成缺陷。通过基于地图的克隆鉴定了GHNSP基因座,并通过遗传分析(使用CRISPR/CAS9系统的共处测试和等位基因预测)确认。原位杂交表明,GHNSP在tapetum中高度表达。ghnsp编码与ATQRT3同源的多边形乳糖苷酶蛋白,该蛋白在花粉外外的形成中提出了聚半乳糖苷酶的功能。这些结果表明GHNSP在功能上与ATQRT3不同,后者具有微孢子分离的功能。生化分析表明,在发育阶段8的1355a花药中,去酯果胶的百分比显着增加。此外,使用对抗酯的抗体和酯化的均质均质乳糖醇(JIM5和JIM7)的抗体研究表明,GHNSP突变体在录音带中表现出丰富的脱骨含量同质性的,它具有磁带和外在的,具有特殊的远处,具有较为有效的效果。GHNSP的表征提供了对多边形乳糖醛酸酯酶和去酯的同型乳半乳糖醇在花粉外部形成中的作用的新理解。
摘要:开花的中国卷心菜在中国南部广泛种植,经常暴露于酸雨。,酸雨对开花中国白菜的生长的影响尚不清楚。在这项研究中,我们研究了模拟酸雨(SAR)对植物高度,土壤植物分析(SPAD)值的影响(叶绿素含量的指数),脯氨酸,丙二醛(MDA),抗氧化剂酶活性,氮气,氮(N),磷(P)和钾盐(K)和钾盐(K)和钾盐(K)和钾盐(K)我们的结果表明,在pH 5.5处的SAR不会损害植物的发育,因为与pH 7.0时的生长特性,光合作用,超氧化物歧化酶和过氧化物酶活性相比,在此pH值明显变化。然而,在pH 4.5和pH 3.5时SAR暴露的2至7次导致抗氧化剂酶活性,MDA和脯氨酸含量的增加,以及叶子Spad值和根活性的降低。营养分析表明,在pH下喷洒4至7倍的SAR 3.5可显着降低中国卷心菜的N,P和K的摄取。此外,在pH 3.5处进行SAR处理可降低表面土壤的pH值和碱性水解N的含量,并随时可用K,但在表面土壤中易于使用的P的pH值增加了8.5%至14.9%。在一起,我们的结果表明,pH 3.5的SAR影响了抗氧化剂酶系统和土壤养分的含量,引起了代谢性疾病,并且最终限制了开花的中国卷心菜的发展和生长。