摘要:基于 CRISPR 的基因组编辑技术继续推动生命科学的重大进步。实现基因组编辑在植物和农业中广泛应用的主要挑战是建立能够使用瞬态方法快速、全面和精确评估编辑技术的方法。在这里,我们报告了一种使用农杆菌浸润技术的新型快速基因组编辑评估方法,可以对基因组编辑效率进行广谱、简单和精确的评估。我们采用了花青素标记物来促进对基因组编辑细胞的视觉筛选,以用于成年草莓果实以及番茄果实、棉花叶和甜菜叶。使用这种方法,我们展示了快速测量由 SpCas9、LbCas12a、A3A-PBE、ABE8e 和 PPE 介导的基因组编辑效率的能力。这种新方法将使研究人员能够快速轻松地评估广泛植物物种的基因组编辑工具,从而进一步加快基因组编辑农作物的开发。
Amorphophallus Titanum(Becc。)是印度尼西亚罕见的植物区系之一,该植物植物也是苏门答腊岛的一种特有植物,自然地沿着武吉的巴里桑(Barisan)生长,大多在西方斜坡中发现了班克鲁(Bengkulu),喀林西(Kerinci),贝雷姆邦(Kerinci),palembang,bukit tinggi。进行了这项研究是为了确定在印度尼西亚的所有地区都没有发现的稀有花叶钛(BECC)的作用。本文中使用的方法是通过分析或审查几篇文章的文献研究。本评论提供了显示A. titanum(Becc。)在文化中,其在生态系统中的作用,其在科学中的作用以及未来的挑战和机遇。a.titanum的保护工作不仅保护其物种,而且还保留了与其存在相关的文化价值。泰坦尼姆不仅对于维持自己的物种的可持续性很重要,而且对于保护具有多种动植物范围的热带森林生态系统。A.泰坦姆(Becc。)也是科学研究的重要作用,以了解生活,生态系统和环境保护工作的各个方面。关键字:杀titanum(BECC);文化;生态系统;科学如何引用:Novitasari,N.,Ruyani,A。和Yanti,F.A。(2025)。杀肌的作用(becc。)文化,生态系统和科学。Biolink:Jurnal Biologi Lingkungan,工业,Kesehatan,第11卷(2):158-167
真核翻译起始因子 4E (EIF4E) 是许多植物物种中马铃薯病毒感染的已知易感因子。大麦黄花叶病毒病是由大麦黄花叶病毒 (BaYMV) 和大麦温和花叶病毒 (BaMMV) 引起的,可导致冬大麦产量损失高达 50%。秋季,幼小的大麦植株的根部被土传的根瘤寄生虫 Polymyxa graminis L. 感染,该寄生虫是病毒载体。病毒建立并系统性扩散到植物上部后,叶子上首先出现黄色花叶。在植物进一步发育的过程中,该病会导致叶子坏死,并且更易受霜冻伤害。由于 HvEIF4E 基因的 rym4 和 rym5 等位基因变体,超过三分之二的欧洲冬大麦品种对 BaYMV 和 BaMMV 具有抗性。然而,几种 BaYMV 和 BaMMV 菌株已经克服了 rym4 和 rym5 介导的抗性。因此,大麦育种需要新的抗性等位基因。因此,我们在 BaMMV/BaYMV 易感冬大麦品种“Igri”中通过 Cas9 内切酶对 EIF4E 基因进行了定向诱变。产生了小插入,导致翻译阅读框发生移位,从而导致 EIF4E 功能丧失。突变发生在原代突变体中已经处于纯合状态。它们的后代被证明总是纯合的并且完全抵抗 BaMMV 的机械接种。EIF4E 敲除植物表现出正常的生长习性并产生谷物,但产量受损。
管理概念:首先,控制和封闭的水吸收和凝结成纳米级毛孔;其次,滴结合。为了研究两者,陶瓷介孔薄膜是有趣的模型系统,其制造[4]和功能性[5]在过去25年中已深入研究。[6]最近对此类膜或分离层的水操作进行了深入研究。[7]但是,与平面和结构化表面相比,在中孔中控制润湿性以及水吸收,凝结和落水的可能性较少得多,并且所研究的情况较低。近年来,关于表面润湿性的主要兴趣是超级恐惧症,超级恐惧症或非染色表面的发展。[8]所使用的方法通常受到天然发生的表面的启发,例如莲花叶,投手植物或雾虫,并且始终基于在微观和纳米尺度上与相应疏水表面化学的表面结构的组合,[8b,9]或与疏水性润滑剂相应地包含在一个粒子中。[10]一个挑战是在切换响应函数组后,润湿性的变化足够大。[9b]通过更改表面上的滴度和接触线的接触角,这对于诸如降落合并之类的应用至关重要,例如,探索可润湿性的这种变化可用于从湿度发电的背景下使用。[15]液滴的轻驱动运动也提供了控制基于液滴的过程。[11]常见应用之一是自算基底物,该基材收集凝结的液滴并将其从结构化底物中删除。[12]在大多数情况下,宏观[13]和微结构[14]表面用于增强自我清洁过程。在自我清洁或雾化过程中,在结构化表面上的滴相结合是速率控制过程之一。[16]使用轻驱动的滴水结合,将允许在收集水或基本研究(如未受干扰的(光诱导的)滴水结合)的过程中使用无接触式的落聚结。可以通过利用可切换极性的官能团或设计微级或纳米级结构来改变刺激性基团在刺激影响时改变。[17]经常使用的刺激是轻的,因为它可以从外部和逐渐调节。一个非常有趣的分子,对光的反应是螺旋形。正如Klajn等人所审查的那样,Spiropyran是许多