生殖特异性小 RNA 是动物和植物生殖系发育的重要调节因子。microRNA2118 (miR2118) 在植物中是保守的,可诱导阶段性小干扰 RNA (phasiRNA) 的产生。为了揭示 miR2118 的生物学功能,我们在此描述了 miR2118 簇大量缺失的水稻突变体。我们的结果表明,miR2118 的缺失会导致水稻严重的雄性和雌性不育,并伴有体细胞花药壁细胞的明显形态和发育异常。小 RNA 分析表明,花药壁中依赖 miR2118 的 21 核苷酸 (nt) phasiRNA 富含 U,与生殖细胞中的 phasiRNA 不同。此外,miR2118 依赖的 21-nt phasiRNA 生物合成可能涉及 Argonaute 蛋白 OsAGO1b/OsAGO1d,这些蛋白在花药壁细胞层中含量丰富。我们的研究突出了体细胞花药壁和生殖细胞之间 phasiRNA 的位点特异性差异,并证明了 miR2118/U-phasiRNA 在花药壁发育和水稻繁殖中发挥的重要作用。
高温对水稻 (Oryza sativa) 的雄性育性有有害影响,但水稻雄配子体免受高温胁迫的机制尚不清楚。在这里,我们分离并鉴定了一种热敏感的雄性不育水稻突变体——热休克蛋白 60-3b (oshsp60-3b),它在最适温度下表现出正常的育性,但随着温度升高育性降低。高温会干扰 oshsp60-3b 花药中花粉淀粉颗粒的形成和活性氧 (ROS) 清除,导致细胞死亡和花粉败育。与突变体表型一致,OsHSP60-3B 在热休克反应中迅速上调,其蛋白质产物定位于质体。至关重要的是,OsHSP60-3B 的过表达增强了转基因植物花粉的耐热性。我们证实 OsHSP60-3B 与质体中的粉质胚乳 6 (FLO6) 相互作用,FLO6 是水稻花粉中淀粉颗粒形成的关键成分。Western blot 结果表明,高温下 oshsp60-3b 花药中的 FLO6 水平显著降低,表明当温度超过最佳条件时,OsHSP60-3B 是稳定 FLO6 所必需的。我们认为,在高温下,OsHSP60-3B 与 FLO6 相互作用,调节水稻花粉中的淀粉颗粒生物合成,并降低花药中的 ROS 水平,以确保水稻雄配子体正常发育。
农杆菌。我们再生了 76 株独立的转基因植物,并检查了单个花序的育性(补充图 1)。八株转基因植物产生了突变花。根据表型,突变花可分为两种类型:花瓣状雄蕊型(PST),具有花瓣状雄蕊和异常花药,以及败育雄蕊型(AST),花丝缩短,花药开裂异常(图 1c)。与野生型花相比,通过 TCC 染色和随后的显微镜观察,PST 和 AST 花的花粉数量较少,且活力为零(图 1d)。在 8 株发生突变花的转基因植株中,4 株(Nmu44、Nmu52、Nmu70 和 Nmu80)表现出正常花和 PST 花,2 株(Nmu43 和 Nmu46)表现出正常花和 AST 花,这 6 株均为嵌合突变体,而 2 株(Nmu58 和
花:植物的生殖部分。雄蕊:花粉产生花的生殖器官。二声:花药中的每个叶中的两个theca。花粉囊:在其中产生花粉的微型孢子虫:最内向的微孢子虫滋养发育中的花粉晶粒。孢子组织:在微孢子囊中心的紧凑型均匀细胞,经历减数分裂(微孢子形成),形成小孢子的四四形小孢子:雄性配子 /花粉颗粒。孢子囊素:存在于花粉颗粒的最外层,高度抗性蛋白。胚芽孔:花粉谷物中的孔,促进气体和水的交换,有助于新出现的花粉管。自动木材:当授粉发生在同一植物的同一朵花之间时。鸡蛋设备:由协同和肌形设备组成,有助于将花粉管进入胚胎囊中。Synergid:存在于胚胎囊中,数量为两个。Filliform设备:存在于同性恋中,引导花粉管进入胚囊。Megaspore:MMC减数分裂划分后形成了四个Megaspore。单孢子的发展:四个中的巨型仓中有一个胚芽发展成胚囊。geitnogamy:将花粉颗粒从花药转移到同一植物的另一花朵的污名。异凝膜:将花粉颗粒从花药转移到不同植物的污名。三重融合:男配子与两个极性核形成三层核的融合。胚胎发育:胚胎的形成。子叶:含种子植物中的胚胎叶。Scutellum:单子叶植物的子叶。休眠:无效状态。parthenocarpy:没有受精的果实的发展。例如 - 香蕉,橙色。polyembryony:在种子中出现多个胚胎。例如 - 柠檬。
(一个标记问题)1。花粉从花药到污名的过程称为:a)发芽b)授粉c)受精d)繁殖2。有助于保护花中胚珠的结构是:a)塞帕尔b)花瓣c)卵巢d)样式3。花的哪一部分产生胚珠?a)花药b)卵巢c)样式d)污名4。在典型的双子座和草的胚胎中,真正的同源结构是:a)鞘翅目和小球tike b)鞘翅目和象征性c)子叶和象征d)d)d)下果仁基和镜头。填写空白5。花粉晶粒从花药到污名的转移称为_______。6保护胚珠并后来发展为果实的结构是_______。7。被子植物中的男配子是由_______产生的。8。男女配子的融合过程称为_______。9。_______是被子植物中最常见的授粉类型。true / false 10。在双施肥中,一个精子核与卵细胞融合,另一个精子核与极性核融合。11。当花粉颗粒到达卵巢时,植物的施肥就会发生。(2个问题)1。什么是双重施肥?2。定义apomixis?3。写tapetum的角色?4。为什么一个苹果称为假水果?(五个标记问题)1。解释7个细胞8-女配子体的成核结构。2。绘制胚珠的图。3。解释巨型生成的发展。4。解释微量生成的过程。答案键:1.b 2.c 3.b 4。c 5.platination 6.卵巢7.生成细胞8。施肥9。entomophilly
摘要细胞质男性不育(CMS)是一种母体遗传的性状,会导致花粉和花药发育中的功能障碍。cms是由核和线粒体基因组之间的相互作用引起的。通过线粒体基因组编码的引起CMS的基因的产物会影响线粒体功能和核基因的调节,从而导致雄性不育。相反,核基因组中生育基因(RF基因)的修复剂抑制了引起CMS的基因的表达并恢复男性生育力。同种质CMS系通常是由于核取代而繁殖的,这会导致去除功能性RF基因,并允许在线粒体中表达引起CMS的基因。CMS/ RF系统是理解植物中线粒体和核基因组的遗传相互作用和合作功能的绝佳模型,并且也是杂交种子生产的农艺上重要特征。在这篇评论文章中,描述了CMS,CMS相关的线粒体基因,RF基因的花粉和花药表型以及引起花粉流产的机制及其对水稻的农艺应用。
全球粮食安全面临严峻挑战,因为预计到 21 世纪中叶世界人口将增长 25%,达到 100 亿 [1]。由于农业用地和淡水有限,需要利用现代农业技术实现更多、更可持续的农作物生产 [2,3]。其中包括开发和利用雄性不育系进行杂交育种和种子生产的更有效的杂种优势利用策略。植物雄性不育是指雌性器官保持正常,而不能形成或释放可育花粉粒。雄性不育突变体含有形态改变的孢子体或配子体花药组织。这些可能是由于植物花药和花粉发育过程中的转录调控、脂质代谢、糖代谢或其他过程存在缺陷所致 [4–6]。雄性不育基因的鉴定和功能分析不仅加深了我们对花药和花粉发育分子机制的认识,而且有利于开发和利用基于生物技术的雄性不育(BMS)系统,用于杂交育种和种子生产[5]。雄性不育可以由细胞质基因或核基因产生。细胞质雄性不育(CMS)由线粒体和核基因控制,在由雄性不育系、保持系和恢复系组成的三系系统中用于商业作物杂交种子生产,尽管它通常存在遗传多样性差、易患疾病以及CMS系恢复不稳定的问题[5]。核控制雄性不育仅由核基因控制,包括遗传稳定的核雄性不育(GMS)和环境敏感的核雄性不育(EGMS)。 EGMS 长期以来一直用于高效生产杂交水稻种子,其双系系统由雄性不育系和保持系组成,而 GMS 只是最近才用于 BMS 系统,例如玉米的种子生产技术 (SPT) 和多控制不育 (MCS) 系统 [7,8]。如上所述,全球粮食安全需要新的有效农业技术(如 BMS 系统)来增加农作物产量。
花药,胚胎培养;细胞和原生质体培养,体细胞杂种和囊状。2.3组织培养的应用:无病原体植物和somaclonal变体的产生,压力抗性植物的产生,次生代谢产物和合成种子。模块III:生物技术12小时3.1生产毛根及其在继发代谢产物生产中的应用。3.2生物技术:简介,历史,范围和应用。rDNA技术:基本
教学大纲:植物组织培养实验室的要求;植物组织培养的技术;媒体组件和准备工作;各种外植体的灭菌技术和接种;各种外植体的无菌操纵;愈伤组织诱导和植物再生;重要农作物的微型传播;花药,胚胎和胚乳文化;再生植物的硬化 /适应;体细胞胚发生和合成种子的产生;分离原生质体;培养原生质体的演示;隔离DNA的证明;基因转移技术的演示,直接方法;基因转移技术的演示,间接方法;证明遗传转化的确认;凝胶电泳技术的演示。纳米颗粒的绿色合成及其大小的表征。
图 3.二倍体黄色马铃薯品种 Criolla Columbia 的花药在不同的体外培养基中发育的愈伤组织和胚胎。A-B。致密愈伤组织 1 级。C. 易碎愈伤组织 4 级。D-E。致密、海绵状愈伤组织,2 级。F-H。致密结节状愈伤组织 2 级。I-L。致密、海绵状愈伤组织,3 级。M. 4 级海绵状愈伤组织,胚胎正在形成。N. 4 级致密愈伤组织,具有胚胎形成。O. 5 级海绵状愈伤组织,有胚胎形成。P. 5 级致密愈伤组织,带有生长和发育中的胚胎。Q. 4 级海绵状愈伤组织,胚胎正在生长和发育。R. 紧凑且海绵状的 4 级愈伤组织,带有成熟胚胎。S-T。紧凑、海绵状的 5 级愈伤组织,具有多个生长的胚胎,并且根治性发育,具有丰富的柔毛。*箭头指向胚胎………………………………107