背景:1型糖尿病(T1DM)是一种慢性自身免疫性条件,由于氧化应激和代谢失调,可能导致长期并发症。二氧酶-1(PON-1)是一种与高密度脂蛋白(HDL)相关的酶,具有双重活性:芳基酯酶和乳糖酶。这些活动可保护脂质免受氧化损伤。T1DM儿童中PON-1的功能状态可以提供有关氧化应激与酶保护作用之间关系的见解。本研究旨在评估伊拉克T1DM儿童中PON-1的芳基酯酶和乳糖酶活性。方法:招募了67名T1DM的儿童,并与57个年龄匹配的健康对照组进行了比较。测量芳基酶和lactonase的酶促活性以评估PON-1的功能状态。计算二氧化氧酶-1/HDL(PON/HDL)比例以评估脂质保护和抗氧化能力。氧化状态。结果:PON-1活性分析显示,患者组的芳基酶(2.36±1.17)和乳糖酶(21.9±7.31)显着降低,与对照组相比(芳基酶= 4.54±1.84,lactonase = 29.51±9.92)。TOS和OSI明显更高,而患者组的TA则显着降低。Pearson相关性显示HDL-C和芳基酶之间存在正相关(P = 0.002,r = 0.379),HDL-C和LACTONAPE(P = 0.040,r = 0.366)。结论:降低的PON-1活性与T1DM有关,表明增强PON-1或减少氧化应激可能有助于预防糖尿病并发症并改善心血管健康。关键字:抗氧化活性,二氧化烷酶-1,芳基酶,乳糖酶,氧化损伤,I型糖尿病。
埃及阿恩·赫尔万(Ain Helwan)的海尔万大学药学学院的生物化学和分子生物学系; B卓越科学卓越中心“ Helwan结构生物学研究(HSBR)”,埃及开罗Helwan University; C埃及Ain Helwan的Helwan University,Helwan University的药学学院药学系; D埃及开罗赫尔旺大学药学院的D Pharmaceutical Organic Chemistry系; e沙特阿拉伯阿西尔国王哈立德大学医学院医学生理学系; f沙特阿拉伯利雅得市阿尔玛雷法大学药学院药学系; G萨尔曼国际大学(KSIU)的药学学院药物系,埃及南西奈; H埃及科学技术大学(E-JONS)的PharmD计划,Hed Borg El-Arab City,埃及Alexandria的h药物化学系; I埃及Kafrelsheikh大学药学院药学系药学系; J Institut des Biomol Ecules Max Mousseron(IBMM),UMR 5247,CNRS,Universit e de Montpellier,Enscm,Montpellier,法国,
Cyano群体以其丰富而多样的重新反应而闻名,因此使其成为访问各种官能团的多功能前体,例如羧酸,醛,胺,胺,胺,胺,胺,四唑,阿沙唑和异唑和异质组。和药品。2加上,氰基覆盖的有机化合物在有机电子和相关技术(例如有机太阳能电池(OSC),或者发光二极管二极管(OLEDS)(OLEDS),非线性光学(NLO)(NLO),光转换剂,光转化剂,有机化的cotals和Phototectes cotal和Photots Phototects和Phototsphtphotox cotal中,有机电子和相关技术的多样化起作用起作用。3因此,通过采用一系列氰化试剂来实现cyanation的重要过程。考虑到环境的影响和毒性,从使用常规的cn型试剂(例如KCN,NACN,Zn(CN)₂和K₄[Fe(CN)₆]到相对更安全的金属硫代盐,从使用常规cn染色试剂进行了明显的过渡。4a,这些试剂中的一些产生化学计量的金属废物和/或释放有害的HCN。为了克服这些多年生问题,已经探索了各种非金属有机氰化试剂,用于氰化含有丙酮氰基氢蛋白,三甲基甲硅烷基氰化物(TMSCN),丙烷基丙烯酸酯,丙烷二酸,乙酸乙酯乙酸乙酯,和异西亚酯。4B此外,硝基苯二烯酸和苯甲氰酸酯也被用作金属催化中的有机溶剂。更重要的是,与广泛研究的C – CN键形成相比,构建X – CN键(X = N,S,O)的探索程度较小。8在过去十年中,许多氰化策略
尽管联芳骨架在天然化合物和药用化合物 1 中非常普遍,但包含糖部分的结构仍然很少。作为天然存在的物质,一些糖功能化的联芳分子(图 1)已从海棠 2 、火棘( 1 ) 3 繁缕( 2 ) 4 和珍珠菜 5 中分离出来,这些植物的茎、树皮、果实和根一直被用于传统中药。化合物 3a,b 存在于云芝 6 和厚朴 7 中,而它们的合成同源物 3c 则被证明 8 是一种很有前途的分子,可用于开发一类新型抗抑郁药物。鞣花单宁是天然多酚,属于可水解单宁类,具有一个或多个六羟基联芳单元,围绕着一个中心葡萄糖核心。 9 其中,1951 年从马豆中分离出来的 corilagin 4 表现出了较强的抗肿瘤活性。10 1995 年,11 对一系列 ( -D-甘露吡喃糖基)联苯底物 5 抑制 E-、P- 和 L- 选择素-IgG 融合蛋白与 HL60 细胞表面表达的 sLex 结合的能力进行了测定。糖功能化联芳分子生物活性的多样性使得它们的硫代类似物成为设计新型生物活性联苯糖苷的主要候选物。事实上,硫糖可以用作糖模拟物,对化学和酶降解都更加稳定。在此背景下,我们最近报道了两种通过
ucd-pymt,产生显性阴性蛋白,该蛋白特异性抑制了由Charles Vinson(NCI,Bethesda,MD,MD,USA)提供的C/EBP成员的DNA结合。根据制造商的说明,使用JetPEI(Polytransfection; Qbiogene,Irvine,CA,美国)进行瞬态转染。允许转染进行16小时,并用1 nm TCDD或0.1%DMSO(对照)处理细胞24小时,然后再诱导凋亡或用TCDD处理TCDD进行RNA表达分析。用于DRE荧光素酶报告基因测定UCD-PYMT细胞用DRE报告基因质粒瞬时转染。 16小时后,用1 nm TCDD或0.1%DMSO(对照)处理4小时。将细胞裂解,并使用Luminometer(Berthold Lumat LB9501/16;宾夕法尼亚州匹兹堡)使用荧光素酶报告基因测定系统(Promega Corp.,Madison,WI)测量荧光素酶活性。 使用Bradford染料测定法(Bio-Rad Laboratories,Inc。,Hercules,CA)将相对光单元标准化为蛋白质浓度。用于DRE荧光素酶报告基因测定UCD-PYMT细胞用DRE报告基因质粒瞬时转染。16小时后,用1 nm TCDD或0.1%DMSO(对照)处理4小时。将细胞裂解,并使用Luminometer(Berthold Lumat LB9501/16;宾夕法尼亚州匹兹堡)使用荧光素酶报告基因测定系统(Promega Corp.,Madison,WI)测量荧光素酶活性。使用Bradford染料测定法(Bio-Rad Laboratories,Inc。,Hercules,CA)将相对光单元标准化为蛋白质浓度。
芳基烃受体(AHR)在对各种环境污染物的反应中起着至关重要的作用,包括几种已知的致癌物。作为配体激活的转录因子,AHR激活调节涉及关键细胞过程的基因的表达,包括解毒途径,细胞增殖和分化以及免疫系统调节。AHR在正常的生理条件下表现出多效效应,有助于各种器官系统的发展和功能。AHR活性在血管生成,心肌细胞分化,卵母细胞成熟,动眼神经形成和造血干细胞维持中很重要。此外,AHR在调节免疫细胞分化和功能中起作用,维持肠上皮的完整性及其相关的免疫系统,并介导UVB诱导的DNA损伤修复反应。它充当关键的环境传感器,介导细胞对各种外源配体的反应。重要的是,AHR的激活或抑制会影响不同的信号通路,具体取决于特定的配体和细胞环境。AHR的配体分为外源或内源性,具有激动或拮抗活性。最近,AHR的作用在癌症发展中确定。它可以根据特定配体,细胞类型和组织微环境等因素施加肿瘤促进和抑制肿瘤抑制作用。新兴证据表明,AHR可能代表了免疫疗法的有希望的靶标,并作为宫颈癌的潜在生物标志物。AHR与宫颈癌中的凋亡途径,免疫检查点系统,类固醇激素和免疫细胞调节过程相互作用。尽管具有潜在的重要性,但AHR在宫颈癌发展和进展中的确切作用仍然未知。在这篇综述中,我们描述了AHR在妇科癌中的重要角色;例如,在宫颈癌中。
一系列卡宾-金-乙炔配合物 [(BiCAAC)AuCC] n C 6 H 5 − n ( n = 1,Au1;n = 2,Au2;n = 3,Au3;BiCAAC = 双环(烷基)(氨基)卡宾) 已被高产率合成。化合物 Au1–Au3 呈现深蓝色至蓝绿色磷光,在所有介质中量子产率高达 43%。金配合物 Au1–Au3 中 (BiCAAC)Au 部分的增加会增加紫外可见光谱中的消光系数和更强的振子强度系数,理论计算支持这一点。发光辐射速率随着 (BiCAAC)Au 部分的增加而降低。时间相关密度泛函理论研究支持磷光的电荷转移性质,这是因为单重态(S 1 )和三重态(T 1 )之间的能隙很大(0.5–0.6 eV)。瞬态发光研究揭示了非结构化紫外瞬时荧光和 428 nm 振动分辨长寿命磷光的存在。有机发光二极管 (OLED) 采用物理气相沉积法制成,以 2,8-双(二苯基磷酰基)二苯并[b,d]呋喃 (PPF) 作为主体材料,与复合物 Au1 反应。在 405 nm 处观察到近紫外电致发光,器件效率为 1%,同时在 10 尼特的实际亮度下 OLED 器件寿命 LT 50 长达 20 分钟,表明一类非常有前景的材料可用于开发稳定的紫外 OLED。
聚合物结构中多个刺激-响应的串联连接使得能够根据需要对功能材料过程进行逻辑上连贯的门控。在这里,光开关二芳基乙烯 (DAE) 充当聚(N-乙烯基己内酰胺)微凝胶中的交联剂,并允许光诱导体积相变温度 (VPTT) 发生变化。虽然低于 VPTT 的膨胀微凝胶易受力并发生断裂-聚集过程,但高于 VPTT 的塌陷微凝胶在超声波诱导的机械场中保持完整。在 VPTT 转变范围内,DAE 的光开关将微凝胶从膨胀状态转移到塌陷状态,从而控制它们对力的响应,如嵌入式荧光机械响应性分子的光门控激活所示。这种光诱导机械隐形系统在聚合物拓扑级别上运行,因此原则上具有普遍适用性。
2型糖尿病(T2DM)是一种严重的慢性病,在全球范围内增长令人震惊。当前对T2DM的治疗主要依赖于药物组合来控制血糖水平,从而阻止高血糖相关并发症的发作。最近出现了多种靶向药物的开发,作为用于治疗具有多因素发病机理的复杂疾病(例如T2DM)的有吸引力的替代品。蛋白酪氨酸磷酸酶1B(PTP1B)和醛糖还原酶(AKR1B1)是两种与T2DM及其慢性并发症发展至关重要的酶,因此,针对这两种这些酶的双重抑制剂可以为这种复杂的病理学治疗提供新的酶。在继续搜索双靶标的PTP1B/AKR1B1抑制剂时,我们设计了新的(5-芳基-4-OXO-2-硫代硫代硫醇二唑烷-3-基)。,其中3-(4-苯基丁氧基)苄基衍生物6F和7F,具有有趣的抑制活性对这两个靶标,被证明可以控制与T2DM和相关并发症发展有关的特定细胞途径。