摘要:木质素本质上是第二大的聚合物,在木质纤维素生物膜中生物量分馏期间也广泛产生。目前,尽管它代表了芳香剂的最丰富来源,但目前,大多数技术木质素都被燃烧而成,因此它是产生增值化合物的有前途的原料。木质素在组成中是异质的,并且是降解的顽固性,这种木质蛋白极大地阻碍了其使用。值得注意的是,微生物已经进化了特定的酶和专门的代谢途径,以降解该聚合物并代谢其各种芳族成分。近年来,已经设计了新的途径,可以建立能够有效地将木质素降解产物汇合到几个代谢中间体的工程微生物细胞工厂,代表合成各种有价值分子的合成起点。本综述重点介绍了基于系统代谢工程研究的最新成功案例(在实验室/飞行员量表上),旨在产生增值和特种化学品,非常强调CIS -CIS -ruconic Acid的产生,CIS -Muconic Acid是公认的塑料材料合成工业价值的基础。该全球废物流的升级承诺将解决可持续的产品组合,当将解决与流程规模相关的经济问题时,它将成为工业现实。
摘要 - 芳香剂股骨脉冲波速度(CF-PWV)是对动脉刚度的金标准测量,该测量已被认为是有效的心血管疾病(CVD)风险生物标志物。尽管可靠且准确,但是测量CF-PWV的参考方法是耗时的,需要合格的从业者的干预。Photoplethysmography(PPG)是一种非侵入性成本效益的技术,其中包含有关心血管系统的各种信息。本文旨在通过PPG脉冲波分析来探索估计CF-PWV的潜力,以进行大规模的CVD风险筛查。我们的工作包括涉及两个机器学习模型和各种传感器位置的比较分析。基于从silico ppg信号中提取的基准点及其衍生物作为XGBoost和支持向量回归(SVR)模型的输入的一组功能。这些模型在模拟传感器位置上进行了训练,在不同的噪声水平上进行了评估,与以前的研究相比,具有可比性或优越的性能。该提出的方法可在低功率嵌入式处理器上部署。浅表颞动脉位置的信号表现出最佳性能,其R²为1.00,根平方误差(RMSE)为0.13。PPG信号与所提出的方法相结合,尤其是在使用表面颞动脉信号时,尤其是在使用表面上的PWV估计的潜力。我们的结果为所述方法的未来体内验证铺平了道路。索引术语 - 绘画学,机器学习,脉冲年龄,脉冲波速度
通过比较基因组学分析在10种亚米胺类物种中鉴定出参与霉菌修复的基因,并选择了一组白rot basidiomycota(14)和软 - comcomycota(12)种,以确定矩阵的独特生物修复能力。使用系统发育主成分分析(PPCA)探索了基因组,搜索已经记录在生物催化/生物降解数据库中的基因。结果强调了甲藻类中芳香族基因/酶的明显,增加的潜力,尤其强调了高拷贝数和苯甲酸酯4-单一加仑酶[EC:1.14.14.14.92]同源物的不同光谱。此外,与其他白rot基体菌菌相比,在亚无菌素中涉及降解的其他酶更丰富,而参与多环芳族芳族芳族芳族氢碳(PAHS)的降解的酶在Armillariots和其他白色杂物中更为易于量。曲霉和北极曲霉的转录组填充物证实,在木材菌丝菌根中涉及苯甲酸酯和其他单核细胞芳香族降解的几个基因在木材含量的真菌菌丝体中明显地表达。数据与甲藻类物种一致,在降解芳香剂方面具有更强大的潜力。我们的结果提供了一种可靠,实用的解决方案,用于筛选可能的真菌候选者,以根据其基因组学数据的全部生物降解潜力,适用性和可能的专业化。
塑料生产和浪费塑料堆积的增长对社会,环境和经济构成了严重的挑战。当前的机械回收过程受到塑料废物的分类/预处理和塑料降解的限制,该过程要求更有效的回收策略。催化微波辅助的热解可以作为废物塑料化学回收并产生燃料和石化原料(如石脑油)的可行方法。本讲座介绍了我们最近的一系列关于热解反应堆设计和催化剂开发方面的工作,目的是将这项技术推向工业应用。每天开发了一个处理能力为200 kg塑料的实验室尺度连续微波辅助热解系统,该系统具有连续的下水流操作和混合球床反应器。将碳化硅作为微波吸收剂掺入微波加热过程中,可以快速,均匀和节能加热。使用常规ZSM-5催化剂对系统的基线测试获得了基于聚烯烃的塑料的C 5 -C 22液碳氢化合物的57 wt。%。通过使用行业供应链分析工具,使用材料流,与从维珍材料中生产类似产品相比,该过程的节能估计为32%。 为了提高液态烃产物的产量和质量,测试了一系列催化剂并在实验室规模的设置上进行了比较。 ZSM-5涂料在SIC泡沫支撑上。与从维珍材料中生产类似产品相比,该过程的节能估计为32%。为了提高液态烃产物的产量和质量,测试了一系列催化剂并在实验室规模的设置上进行了比较。ZSM-5涂料在SIC泡沫支撑上。值得注意的是,Al 2 O 3的继电器催化,然后是ZSM -5的ZSM -5,最多100%转化为单芳烃,而C 5 -C 12烷烃/烯烃以催化剂与塑性比为4:1; Y5.1,F20沸石和Al 2 O 3促进了主要在C5-C23范围内的烷烃和烷烃的生产; MCM -41导致形成C 13 -C 23烷烃和烷烃,选择性为86.6%; ZSM-5有利于选择性为70%的芳香剂的产生。除了开发和选择适当的催化剂材料外,还需要仔细设计催化反应器,以便在操作过程中确保足够的热量和催化剂床内的大量和传质,并且可以方便地实践催化剂再生程序。传统的设计(例如随机填充床)在此过程中可能会出现问题,因为催化剂停用和可乐/蜡堆积很可能。可能的解决方案是一个结构化催化反应器,该反应器由带有涂层催化剂的结构化填料组成,例如该结构化催化剂已在实验室规模的设置中进行了测试,用于升级热解蒸气,结果表明,在催化活性和稳定性方面,它的表现优于许多其他催化反应器设计。此外,可以将复合催化剂重新生成和重复使用,同时很好地保留其材料特性和多个反应再生周期后的催化活性。
本文件是RIS3南荷兰2021-2027:创新和实现影响。这一范围内的款项对S Mart s pecialation 1的策划旨在指导与荷兰中央政府和省级基金有关的区域可用的欧洲公共资金。使用所有公共和私人资金进行研发不是蓝图,而是针对南荷兰的聚会的创新指南针。在与区域中小企业,知识机构,当局和其他利益相关者的互动过程中,该地区制定了其创新和智能专业化战略。南方的力量:强大的创新系统得益于强大的中小企业,知识地位以及协作文化和基础设施,南方的创新政策旨在利用和增强南荷兰的经济和创新力量。这一优势在于国际领先的知识方和校园的独特组合,这些方面占据了技术,创新中小企业的潮流地位,以及一个能够将创新推向市场的强大制造业。,但这超出了南荷兰的强大知识地位;合作文化和基础设施和知识的应用 - 结合创造力和设计 - 意味着该地区具有强大的创新系统。技术是必不可少的,对该地区的挑战是利用创新,以人类,动物和自然的规模明智地利用南方的技术力量。南荷兰的政党开放的心态,积极寻求与国内外地区以外的合作伙伴的联系。南荷兰在其国家和国际顶级集群周围拥有强大的创新生态系统(在先前的RIS3中指定为高科技系统和材料,农业科学和化学,生命科学与健康,生物基础,物流,物流和维护)。国际市场领导者在这种情况下以初创企业和规模,校园,三螺旋组织和区域发展公司的形式运作,以形成强大的创新系统。欧洲创新刺激资金对于这种创新系统的运作至关重要。例如,在2014 - 2020年欧盟计划期间,南荷兰的项目获得了超过10亿欧元的赠款,其中几乎一半来自2020年。添加到公共和私人共同融资中,这导致了数十亿欧元的创新激励措施。在此摘要中,不可能为在上一个欧盟计划期间支持的所有领先的创新项目伸张正义。也就是说,上一个运营计划(OP)的标志性项目包括Aqua Valley(Zeeland的稳定,强大和可持续水产养殖创新); Photon Delta(综合光子学中的业务活动和区域创新力量的提升); Beam NL(将生物医学科学的创新带入市场); FieldLab Campione(为化学和加工公司维护100%可靠);和Biorizon(生物植物学作为石化芳香剂的可持续替代品)。在过去的七年中,这些和其他110多个项目为更强大,更具可持续性和更具创新性的南荷兰做出了贡献。创新基金已经流入整个地区;在Brainport成为国际标准者之后,建立坚实的基础也一直是Limburg(Brightlands Campuses/Kennis-AS),Zeeland(通过Zeeland校园)和其他Brabant地区的重点。