摘要:高效的植物转化和组织培养方法对于植物的遗传工程和先进的分子育种至关重要,但在栽培的八倍体草莓 (Fragaria × ananassa) 中,这两种方法都尚未得到很好的建立。在本研究中,针对两个基因不同的草莓品种 Sweet Sensation VR Florida 127 (FL127) 和 Florida Brilliance (FB) 建立并优化了一种芽再生方法。从温室生长的植物中获得的尖端、节点和叶柄的匍匐茎段被用作外植体,用于比较芽再生率。'FL127' 在优化条件下显示出最高的芽再生频率,而'FB' 在相同培养基类型中对较低浓度的 N6-苄基腺苷 (BA) (0.01 mg/L) 的反应最佳。 'FL127' 和 'FB' 中体细胞胚从匍匐茎尖 (RT) 向芽再生的平均转化频率分别为 42.8% 和 56.9%。利用这些优化的组织培养条件,进行农杆菌介导的 CRISPR/Cas9 基因编辑,以检查品种 FL127 中八氢番茄红素去饱和酶 FaPDS 的转化和靶基因编辑效率。总共 234 个外植体接种了含有 Cas9-FaPDS 的农杆菌,导致愈伤组织诱导效率为 80.3%,其中 13.3% 的再生植物表现出部分或完全的白化表型。编辑子代的扩增子测序表明,所有 FaPDS 同源拷贝的向导 RNA (gRNA) 靶位点或侧翼区域均发生了突变(替换、插入和缺失)。我们的研究结果为草莓功能基因组学研究和基因编辑指导的品种改良提供了有效的组织培养和转化方法。
摘要 Ficus pseudopalma 俗称菲律宾榕、龙血树榕或棕榈叶榕,是桑科的一种本土物种。由于其外观类似棕榈树,当地人将其称为 Lubi-lubi 或 Niyog-niyogan,它作为观赏植物、食物来源和药用资源具有重要的民族植物学价值。鉴于其特有地位,繁殖 F. pseudopalma 对于保护、生物多样性保护和维持生态系统健康至关重要。本研究旨在确定最有效的 F. pseudopalma 茎插繁殖介质以支持这些工作。采用完全随机设计 (CRD),每个处理重复 10 次。从健康母株中收集 10 厘米长的茎插,其中 40 多个插条用作种植材料。准备了三种繁殖培养基:M1(表土、泥炭和锯末,比例为 1:1:1)、M2(表土和沙子,比例为 1:3)和 M3(表土和蒸干稻壳,比例为 1:1)。插穗培育 50 天,在此期间及之后收集根系和芽系发育数据。进行统计分析,包括方差分析和 Bonferroni 调整的事后检验,显著性水平为 P<0.05,以评估结果。研究结果表明,表土、泥炭和锯末的组合(M1)是最有效的繁殖培养基,与对照培养基(M0)相比,其显著促进了根系和芽系的生长。虽然含有表土和沙子的培养基(M2)和含有蒸干稻壳的表土(M3)支持植物生长,但它们的表现不如 M1 显著。有趣的是,虽然 M1 与对照有显著差异,但其他培养基组合在大多数生长参数上没有显著差异。总之,M1 成为 F. pseudopalma 茎插的最佳繁殖培养基,为提高繁殖成功率提供了一种实用方法。本研究通过确定支持这种特有物种生长和可持续性的有效栽培技术,为菲律宾本土植物的保护策略做出了贡献。关键词:无花果、栽培、参数、最佳培养基、生长
[5] R. Schmidt 和 U. Scheuermann,“使用芯片作为温度传感器 - 陡峭横向温度梯度对 Vce(T) 测量的影响”,2009 年第 13 届欧洲电力电子及应用会议,巴塞罗那,2009 年,第 1-9 页。
公共首先为绿色联盟进行的研究支持了这一点。接受采访的年轻毕业生对绿色工作表示热情,认为他们是高技能,有趣和未来的工作。做一些值得通过工作的事情是他们的重要动机。但是,研究发现,整个人口中对绿色经济的了解非常低,许多人不了解绿色就业机会。16对绿色经济的越来越多的了解对于吸引年轻人从事它至关重要:公众最新的研究首先发现那些对绿色工作选择有更好了解的人更有可能有兴趣在其职业生涯的某个时候从事这种工作。17
AM 设计、功能集成...... 掌握必须深度集成的数字线程 工艺:质量、过程控制、成本/生产力、后制造和表面光洁度 主粉末:化学、回收、生产力、成本 增强/智能功能:复杂系统的系统分析将推动我们的设计 多材料工艺将实现复杂功能 电子和电气元件集成日趋成熟
本报告总结了美国国家标准与技术研究所 (NIST) 信息技术实验室应用与计算科学部最近的技术工作。第一部分(概述)概述了该部门的活动,包括去年技术成就的亮点。第二部分(特色)详细介绍了今年特别值得注意的八个项目。接下来的第三部分(项目摘要)简要概述了过去一年中所有活跃的技术项目。第四部分(活动数据)列出了部门工作人员参与的出版物、技术讲座和其他专业活动。本文件涵盖的报告期为 2013 年 10 月至 2014 年 12 月。如需更多信息,请联系 Ronald F. Boisvert,邮寄地址 8910,NIST,马里兰州盖瑟斯堡 20899-8910,电话 301-975-3812,电子邮件 boisvert@nist.gov,或访问该部门的网站