发现蛋白激酶在癌症形成和进展中发挥关键作用的发现引发了人们的极大兴趣,并激发了人们对开发有针对性治疗的信号通路的强烈研究,并鉴定了预后和预测性生物标志物。尽管大多数努力都集中在酪氨酸激酶抑制剂(TKIS)和酪氨酸激酶受体(RTK)的靶向抗体,但也针对丝氨酸/苏氨酸激酶和蛋白质磷酸酶。不幸的是,抑制剂通常缺乏特定的牙齿,并影响各种激酶。此外,经过治疗的肿瘤获得耐药性和复发性,需要二线治疗。随着精确医学的出现,很明显,网络比单个蛋白质和基因更强大。药物开发正在转向动态信号网络靶向。在后基因组时代,翻译后的修饰,例如蛋白质磷酸化及其如何影响活动或网络结构的理解仍然很差。本期专门针对癌症中蛋白质磷酸化途径的揭示的特刊,其中包括来自全球七个以上国家的80多名科学家的七篇评论文章和六篇原始研究论文。两个审查手稿提供了丝氨酸/苏氨酸蛋白激酶PKD和PKCθ的概述。Zhang等。 [1]讨论在二酰基甘油第二信号信号网络中运行的蛋白激酶D 1、2和3(PKD)家族成员,影响了不同生物系统和疾病模型中多种基本细胞功能。 Nicolle等。Zhang等。[1]讨论在二酰基甘油第二信号信号网络中运行的蛋白激酶D 1、2和3(PKD)家族成员,影响了不同生物系统和疾病模型中多种基本细胞功能。Nicolle等。在许多人类疾病中发现了PKD同工型表达和活性的失调。本综述着重于与癌症相关的生物学过程(细胞增殖,生存,凋亡,粘附,EMT,迁移和入侵),对此,理解对于开发更安全,更有效的PKD靶向疗法至关重要。蛋白激酶C theta(PKCθ)属于一种新型的PKC亚家族,在免疫系统和各种疾病的病理中起作用。[2]将其审查集中在其在癌症中的新兴功能上。其表达增加会导致细胞增殖,迁移和侵袭,从而导致癌症的启动和恶性进展。在自身免疫性疾病的背景下,PKCθ抑制剂的最新发展可能会使PKCθ与PKCθ有关的癌症的出现有益。pKC被质膜中的脂质激活,并与聚集在表皮生长因子受体(EGFR)上的支架结合。Heckman等人在论文中使用不同的表位识别抗体。[3]证明了PKCε是在两个构象中发现的,其中活性形式定位在内体中,将囊泡运送到内吞回收室中,而灭活则抵消了此功能。另一种形式是可溶的,存在于富含肌动蛋白的结构上,并与囊泡松散结合。因此,活化的PKC持续使用EGFR,更有可能进入内吞回收室。pumilus(Binase)的细菌RNase对具有某些癌基因的肿瘤细胞具有细胞毒性作用。核糖核酸(RNase)的动物,真菌和细菌起源已被证明是开发新型抗癌药物的有前途的工具。在实验贡献中,Ulyanova等人。[4]旨在识别结构
摘要:各种 HER2 阳性恶性肿瘤的治疗管理涉及使用 HER2 靶向抗体-药物偶联物 (ADC)。ADC 的主要作用机制是释放细胞毒性化学物质,导致单链或双链 DNA 断裂和细胞死亡。由于内源性和外源性 DNA 损伤不可避免,细胞已经进化出 DNA 损伤修复机制。因此,将 DNA 损伤修复抑制剂和 HER2 靶向 ADC 结合起来可能是治疗 HER2 阳性癌症的实用策略。通过评估细胞生长抑制、凋亡和细胞周期停滞以及体内药效学研究,确定了 HER2 靶向 ADC DS-8201 与 PARPi (AZD2281)(一种靶向聚(ADP-核糖)聚合酶的 DNA 损伤修复抑制剂)和 ATRi (BAY1895344)(抑制丝氨酸/苏氨酸激酶 ATR)联合使用的效果。AZD2281 和 BAY1895344 的联合使用协同增强了 DS-8201 对 HER2 阳性癌细胞生长的抑制作用,诱导 DNA 损伤和凋亡,但对 HER2 阴性的 MDA-MB-231 乳腺癌细胞没有影响。我们的数据表明,DS-8201 和 DNA 损伤修复抑制剂在 NCI-N87 异种移植模型中具有协同抗癌作用,这种作用可能反映了肿瘤组织中 γ-H2AX 蛋白的上调。总之,我们的结果表明,DS-8201、BAY1895344 和 AZD2281 的组合具有显著的协同抗肿瘤活性,这表明 DNA 损伤修复抑制剂与 HER2 靶向 ADC 联合使用是治疗 HER2 阳性恶性肿瘤的潜在方法,为未来的临床应用提供了一种有希望的策略。
缩写:165t,位于165位的苏氨酸(突变体); A165,位于165位的丙氨酸(野生型); AAV,腺相关病毒; ACTB,β-肌动蛋白; Alt,丙氨酸氨基转移酶; AST,天冬氨酸氨基转移酶; ATF6,激活转录因子6; CHX,环己酰亚胺; CQ,氯喹; DBEQ,Dibenzylquinazoline-2,4-二胺; ECL,增强的化学发光; ERAD,内质网相关降解; FACL4,脂肪酸-COA连接酶4; GCKR,葡萄糖酶调节剂; GWAS,全基因组协会研究; HMARC1,人线粒体减少的组件1; IP,免疫沉淀; IRE1,内切核酸酶肌醇提高酶1; ITR,反向终端重复;妈妈,线粒体相关的膜; MARC1,线粒体减少氨基氧霉素的成分1; MASLD,代谢功能障碍相关的脂肪分裂肝病; Mboat7,包含7的膜结合的O-酰基转移酶结构域; MMARC1,小鼠线粒体减少的成分1; ORO,油红色O染色; PERK,蛋白激酶R样性内质网(ER)激酶; PNPLA3,含patatin样磷脂酶结构域的蛋白3; RTA,相对总丰度; Ru,相对单位; SD,标准偏差; SDS,十二烷基硫酸钠; SDS-PAGE,十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳; SEM,平均值的标准误差; TM6SF2,跨膜6超家族成员2; UBC,泛素C; UBE2E1,泛素结合酶E2-E1; UBE3EC,泛素蛋白连接酶E3C; UPR,展开的蛋白质反应; UPS,泛素介导的蛋白酶体(降解)系统; VCP,含勇气的蛋白质。
缩写:Ψ,假基因;ceRNA,竞争内源性RNA;MRE,微小RNA反应元件;miRNA,微小RNA;TSG,肿瘤抑制基因;mRNA,信使RNA;PP,加工假基因;UP,未加工假基因;UPG,单一假基因,RT,逆转录转座;LINE,长散在核元件;siRNA,短干扰RNA;circRNA,环状RNA;AD,阿尔茨海默病;FTH1,铁蛋白重链;;PTENP1,PTENP1假基因;HMGEC,人乳腺上皮细胞;CRDP,环状RNA衍生的假基因;;HMGA1P,高迁移率族AT-Hook 1假基因;RBP,RNA结合蛋白;;lncRNA,长非编码RNA;CRC,染色质重塑复合物;ERK,细胞外信号调节激酶; BRAF,B-Raf原癌基因;PI3K,磷酸肌醇3-激酶;AKT,丝氨酸/苏氨酸激酶;MAPK,丝裂原活化蛋白激酶;qRT-PCR,定量逆转录聚合酶链反应;FISH,荧光原位杂交;ceRNA假说,竞争性内源性RNA假说;PTPN11,蛋白酪氨酸磷酸酶,非受体型11;NDs,神经退行性疾病;EGFR,上皮生长因子受体;TNF,肿瘤坏死因子;早期生长反应蛋白1(EGR1),HMGA,高迁移率族at-hook 1基因;PMOM,精准医疗肿瘤学市场;scRNA-seq,单细胞RNA测序;ISH,原位杂交;RNAi,RNA干扰;LNP,脂质纳米颗粒; BCL,B 细胞淋巴瘤;AI,人工智能;IP,免疫沉淀;RIP,RNA 免疫沉淀;HRISH,高分辨率原位杂交
目的:本研究旨在阐明丝氨酸苏氨酸激酶 11 (STK11) 在非小细胞肺癌 (NSCLC) 中的作用,特别是其在 KRAS 突变 NSCLC 对抗 PD-1 单克隆抗体治疗的耐药性中的作用。该研究还探讨了 STK11 改变对预后、蛋白质相互作用、免疫细胞参与和药物敏感性的影响。方法:进行全面的生物信息学分析以评估各种 NSCLC 亚型中的 STK11 表达水平和突变谱。该研究将这些发现与临床病理特征相关联,并评估了免疫细胞浸润、免疫微环境和潜在的治疗选择。还进行了分子对接分析以研究与各种抑制剂的相互作用。结果:结果显示整个 NSCLC 中的 STK11 表达升高,突变率为 14%,并且与良好的预后相关。发现 STK11 表达与免疫细胞浸润和以免疫活性较低为特征的冷免疫微环境相关。 Nutlin-3a (-) 被确定为 STK11 突变 NSCLC 病例的潜在治疗选择。分子对接分析提供了与各种抑制剂相互作用的见解,为个性化治疗策略提供了前景。结论:本研究强调 STK11 是 NSCLC 的双重预后和治疗生物标志物。研究结果强调了 STK11 与免疫活动之间的复杂相互作用,为 NSCLC 的个性化治疗方法提供了创新途径。关键词:非小细胞肺癌、STK11、免疫细胞浸润、预后生物标志物、治疗生物标志物、免疫疗法耐药性
蛋白质磷酸化或去磷酸化是在所有生物体中发现的信号传递的重要机制。多年来,蛋白激酶和磷酸酶的性质被认为在原核生物和真核生物中是不同的。证明主要发生在组氨酸和天冬氨酸残基上,而相反,通常在丝氨酸,苏氨酸或酪氨酸残基上修饰真核蛋白。然而,近年来在细菌中报道了真核样蛋白激酶和磷酸酶,相反,在真核生物中发现了原核性蛋白质的ASP酶的同源物(有关评论,请参见[1-7])。这些研究表明,真核生物和原核生物可能具有所有类型的信号转导的相似机制。蛋白磷酸酶可以根据其酶特异性(即促磷酸酶和Tyr磷酸酶)分为两组[8,9]。ser} THR磷酸酶在ITRO中显示出广泛的特异性,并已分为四类:PP1,PP2A,PP2B和PP2C,根据保守的基序,它们对抑制剂和离子的抑制剂和离子需求的敏感性[9-11]。氨基酸序列比较表明PP1,PP2A和PP2B是同一PPP家族的成员[10]。PPP家族代表了较高的真核生物中蛋白质ser}的最大蛋白质ser} [12]。这些酶还与对称的折断氨酸四磷酸酶具有序列相似性[13]。被识别的PPP家族的第一个原核生物是噬菌体λ221的乘积[14]。目前,几个成员在ARCHEA和细菌中均已详细介绍[15-19]。但是,关于生理学的数据很少
创伤后骨关节炎(PTOA)是一种多因素的软骨,滑膜和软骨下骨,导致直接关节外伤和创伤性损伤后的关节力学改变。目前没有针对PTOA的疾病改良疗法,而稳定关节的早期手术干预措施则不会停止疾病的进展。慢性疼痛和功能障碍对生活质量产生负面影响,并对受影响的患者造成经济损失。虽然多种机制在疾病进展中发挥了作用,但关节炎症是关键因素。撞击诱导的线粒体功能障碍和细胞死亡或创伤后的关节力学改变了炎性细胞因子从滑膜细胞和软骨细胞释放,软骨分解代谢,软骨变性,软骨变性,合成性炎,骨膜炎和结构骨骼病的复杂性。当前对疾病病理学基础的细胞和分子机制的理解已允许研究关节中针对独特凋亡和/或炎症过程的各种治疗策略。本综述提供了PTOA发病机理的炎症和凋亡机制的简洁概述,并确定了减轻疾病进展的潜在治疗靶标。我们突出显示了Ca 2+ /钙调蛋白依赖性蛋白激酶激酶2(CAMKK2),这是一种丝氨酸 /苏氨酸蛋白激酶,最近被鉴定出来在鼠和人类骨关节炎的发病机理中通过协调软骨细胞炎症反应和凋亡而发挥作用。鉴于其在调节巨噬细胞炎症信号传导和骨骼重塑方面的额外作用,CAMKK2成为一种有希望的疾病改良治疗靶标针对PTOA。
背景:胆管癌 (CCA) 是仅次于肝细胞癌的第二大常见肝胆管癌,预后差且治疗选择有限。本研究旨在回顾有关 CCA 遗传基础、发病机制、疾病进展和预后的分子靶点/信号通路的现有知识,包括 CCA 靶向治疗的潜在靶点。方法:系统评价按照 PRISMA 指南进行。使用以下关键词在 PubMed 和 Science Direct 数据库中进行系统搜索:“胆管癌”和“分子靶点”和/或“信号通路”和/或“靶向治疗”和/或“癌症化疗”。资格标准包括:i) 以英文发表的全文文章,ii) 包含与 CCA 发病机制/疾病进展/预后和/或靶向治疗相关的分子靶点/信号通路的体外和/或体内和/或临床研究的文章。最终,符合资格标准的 73 项研究被纳入最终数据综合。结果:截至 2022 年 4 月,共确定了 833 篇相关文章,最终将符合资格标准的 73 项研究纳入分析。报告了针对信号通路的分子生物标志物和药物。最近的研究集中在针对凋亡和细胞增殖途径,以及血管生成和转移途径。更多的努力集中在测试联合疗法对癌细胞和特别是 CCA 的疗效上。PI3K(磷酸肌醇 3-激酶)/ERK/Akt(AKT 丝氨酸/苏氨酸激酶 1)/mTOR(雷帕霉素的哺乳动物靶点)信号通路和 HER2(人类表皮生长因子受体 2)和 EGFR(表皮生长因子受体)通路是 CCA 治疗最有潜力的靶点。结论:所获得的信息可用于进一步开发 CCA 早期诊断的诊断工具以及有效的 CCA 靶向治疗方法。
粗蛋白(最小)12.00%赖氨酸(最小)0.85%甲氨酸(最小)0.33%苏氨酸(最小)0.58%色氨酸(最小)0.23%的粗脂脂肪(最小)12.00%omega-3脂肪酸(最小)0.90%omega-6脂肪酸(最小)4.80%粗纤(最大)18.00%酸洗涤剂纤维(最大)25.00%中性洗涤剂纤维(最大)42.00%饮食淀粉(最大)10.00%糖(最大)8.30%钙(最小)0.75%钙(最大)1.25%磷(最小)0.45%钠(最小)0.20%钠(最大)0.70%灰分(最大)10.00%镁(最小)0.40%钾(最小)1.00%硫(最小)0.20%铜(最小)55 ppm硒(最小)0.50 ppm硒(最大)0.60 ppm锌(最小)165 ppm铁(最小)175 ppm锰(最小)110 ppm碘(最小)2 ppm钴(最小)1 ppm维生素A(最小)6,000 IU/LB维生素D(最小)1,000 IU/LB维生素E(最小)200 IU/LB Riboflavin(Min。)2.20 mg/lb硫胺素(最小)6.50 mg/lb生物素(最小)1.60 mg/lb抗坏血酸(最小)110 mg/lb糖酵母(最小)28亿cfu/lb总微生物计数*(最小)30亿CFU/LB蛋白酶(枯草芽孢杆菌)**(最小)5,400 U/LBα-淀粉酶(叶肉芽芽孢杆菌)***(最小) 250 U/LB5,400 U/LBα-淀粉酶(叶肉芽芽孢杆菌)***(最小)250 U/LB
最近,Iotarg遗传筛选平台将SIK3鉴定为癌症生物学中的新细胞信号调节剂。siks是属于AMP激活蛋白激酶(AMPK)家族的丝氨酸/苏氨酸激酶。OMX-0407,一种口服可用的单位纳摩尔抑制剂可在体外和体内抑制不同肿瘤模型的肿瘤生长。在全面的生存力屏幕中,使用不同适应症的225个人类癌细胞系来识别OMX-0407在癌症子集中的选择性活动曲线。深入的转录组分析,并用于识别和验证预测性生物标志物签名,这成功地预测了83%的选定癌细胞系,以响应OMX-0407疗法。在类似临床试验的情况下,根据其对OMX-0407的敏感性预测选择了患者衍生的肿瘤异种移植(PDX)模型,并在离体肿瘤生存能力测定中成功测试。对数百种细胞系,PDX模型和患者数据集的敏感性预测来自癌症基因组地图集(TCGA)反映出对OMX-0407敏感的指示的高度重叠,而与分析的RAW数据集无关。代表OMX-0407敏感性肿瘤,对OMX-0407的单药治疗研究表明,在各种合素鼠肿瘤模型中,剂量依赖性抗肿瘤功效。与抗PD-1单一疗法相比,OMX-0407在单个肿瘤模型中具有显着延长的总生存期和高达90%肿瘤生长抑制的延长和90%的肿瘤生长抑制作用。我们确定了一种反应预测的生物标志物签名,这可能是以特定指示为OMX-0407发育的基础,并将评估其对即将进行的临床研究中对OMX-0407治疗高反应的患者的潜力。
