本政策摘要的目的是讨论马其顿西部社会经济发展的现状和前景。在过去的十年中,该地区面临着重要的挑战:2009年的经济危机,关闭褐煤和电厂的关闭以及最近的能源危机。这些对该地区的经济产生了重大影响,以及其在碳中性含量中的转化潜力。,我们通过对就业和总价值的额外过渡基金进行影响评估,为替代性拟议干预措施和投资计划的效率辩论。这允许哪些行动对区域经济产生最大影响;可以用作未来政策计划指南的信息。
化合物V228具有以三级亮氨酸为接头的骨架结构。对接结果表明,复合V228可以与M Pro的活性位点结合,它们的相互作用包括七个氢键(His41,ASN142,His164,his164,Glu166,his172和gln189)。与V253相比,将Tert丁基掺入化合物V228中赋予了显着的空间阻滞,从而导致对接结果中有明显的构象。附着在吡啶上的酰胺结构与His41,His164和Gln189表现出氢键相互作用,而另一种与卤代苯苯苯二苯二酰胺结构相关的氢结构与GLU166和ASN142的氢键合作。与上述化合物不同,带有环丙胺结构的V228缺乏原代胺,因此它不能与GLU166形成独特的盐桥相互作用。
依普利酮 (Inspra ® ) 依他尼酸 (Edecrin ) 呋塞米 (Lasix®) 氢氯噻嗪 (Microzide , Esidrix®) 吲达帕胺 (Lozol ) 美托拉宗 (Zaroxolyn ) 甲唑胺 甲氯噻嗪 美托拉宗 (Zaroxoxlyn ) 螺内酯 (Aldactone ) 螺内酯 / 氢氯噻嗪 (Aldactazide ) 托拉塞米 (Demadex ) 氨苯蝶啶 (Dyrenium ) 氨苯蝶啶 / HCTZ (Dyazide , Maxzide ) 他汀类药物 阿托伐他汀 (Lipitor) 氟伐他汀 (Lescol) 洛伐他汀(Mevacor) 匹伐他汀(Livalo) 普伐他汀(Pravachol) 瑞舒伐他汀(Crestor) 辛伐他汀(Zocor)
抗臭氧剂是能够阻碍或减缓臭氧诱导降解的物质。臭氧自然存在于空气中,浓度极低,具有高反应性,尤其对不饱和聚合物反应剧烈,会导致臭氧裂解。臭氧分解需要一类独特的抗氧化稳定剂,通常以对苯二胺为基础。这些抗臭氧剂与臭氧的反应速度比臭氧与聚合物中易受损伤的官能团(通常是烯烃基团)的反应速度更快。它们之所以能做到这一点,是因为它们具有较低的电离能,能够通过电子转移与臭氧结合。这种转变会产生自由基阳离子,并通过芳香性进行稳定。这些物质保持活性并继续反应,生成1,4-苯醌、苯二胺二聚体和氨氧基自由基等产物[66- 67]。
据我们所知,我们在此确认,镉 (Cd)、铅 (Pb)、汞 (Hg)、六价铬 [Cr(VI)]、多溴联苯 (PBB)、多溴二苯醚 (PBDE)、邻苯二甲酸二(2-乙基己基)酯 (DEHP)、邻苯二甲酸丁苄酯 (BBP)、邻苯二甲酸二丁酯 (DBP) 和邻苯二甲酸二异丁酯 (DIBP) 等物质受以下指令的管制: - 欧洲议会和理事会 2011 年 6 月 8 日颁布的关于限制在电气和电子设备中使用某些危险物质 (RoHS) 的 2011/65/EU 指令,以及委员会授权指令 (EU) 2024/1416 的修订版; - 欧洲议会和理事会 2000 年 9 月 18 日颁布的关于报废汽车的 2000/53/EC 指令附件 II ( ELV )经委员会指令 2023/544 修订,- 中国法规 - 第 32 号命令,《电气电子产品有害物质限制使用管理方法》,于 2016 年 1 月 21 日发布,在原材料生产过程中或上述三菱化学先进材料库存形状制造过程中均未有意引入 1 。由于无法合理预期上述物质的存在,三菱化学先进材料不会通过测试系统地检查其库存形状中是否存在上述物质。
摘要:乙烯与极性单体的直接共聚以产生功能性聚集素,由于其简单的操作过程和可控的产品微观结构,因此仍然具有很高的吸引力。低成本的镍催化剂已在学术界广泛使用,用于合成极性聚乙烯。但是,适合工业生产条件的高温共聚催化剂的发展仍然是一个重大挑战。由最终共聚物分类,本综述提供了镍复合物在过去五年中较高温度下催化镍复合物的研究进度的综合摘要。乙二醇丙烯酸酯共聚物,乙二醇 - 丙烯酸丁酯共聚物,乙烯 - 其他基本极性单体共聚物和乙烯 - 特殊极性单体共聚物的聚合结果彻底总结了。所涉及的镍催化剂包括磷酸 - 苯酸酯类型,双膦氧化物类型,磷酸 - 键盘型,磷酸苯甲胺类型和磷酸 - 二元酸酯类型。通过这些催化剂的有效调节,分子量,分子量分布,分子量分布,熔点和极性单体掺入比例进行了结论和讨论。它揭示了催化剂系统的优化主要是通过催化剂结构的理性设计,额外的添加剂引入和单位催化剂异质化实现的。因此,一些出色的催化剂能够产生与商业产品非常相似的极性聚乙烯。要实现工业化,必须进一步强调高温共聚系统的基本科学以及所得的极性聚乙烯的应用性能。
禁忌症: • 不适用于女性 1 注意: • 高剂量比卡鲁胺(如每日 150 毫克)不建议用于局限性前列腺癌患者,否则将接受密切观察或主动监测,因为这种剂量与死亡率增加有关;请参阅患者接受治疗的方案 1,4,5 • 有心脏病史、心血管危险因素、长 QT 综合征、电解质异常、充血性心力衰竭或同时服用其他 QT 延长药物的患者可能会增加发生心血管副作用的风险 1 • 无论患者是否有糖尿病,联合雄激素剥夺疗法都可能导致血糖耐受量降低和/或糖化血红蛋白 (HbA1c) 降低;在开始治疗前评估血糖和/或 HbA1c 1 • 睾酮抑制会导致贫血;在开始治疗前评估贫血风险 1 • 长期联合雄激素剥夺疗法会增加骨质疏松症和骨折的风险;评估具有骨矿物质含量和/或骨量下降重大风险因素的患者的治疗益处 1 致癌性:根据动物研究,此药对人类没有致癌潜力。1,4 致突变性:在 Ames 试验或哺乳动物体内和体外突变试验中无致突变性 1,4 生育力:在动物研究中,在高于人类临床暴露后的暴露量下发生了睾丸萎缩和精子发生抑制。动物受试者的交配间隔和成功交配时间也有所增加,但未观察到对成功交配后生育力的影响。这些影响在最后一次给药后 7 周内是可逆的。基于这些影响,应假设接受治疗的人类男性会出现一段时间的生育力低下或不育症。在雌性测试动物中,在高于人类临床暴露后的暴露量下发生了发情周期不规律,但未观察到对雌性生育力的影响。 1,4 怀孕:在动物研究中,在暴露量低于人类临床暴露量的情况下,接受治疗的雌性后代的雄性后代中观察到阳痿、肛门生殖器距离缩短和导致尿道下裂的女性化。在接受治疗的雌性后代中观察到怀孕率降低。基于这些影响,有育龄女性伴侣的男性患者应在治疗期间和最后一次给药后的 130 天内采取有效的避孕措施。1,4 不建议母乳喂养,因为可能会分泌到母乳中。在动物研究中,在母乳中检测到了比卡鲁胺。1
虽然这可能不直接适用于您,但如果您的伴侣有可能怀孕,您和您的伴侣必须:► 在服用此药的同时使用 2 种有效的避孕方法。除非您的医疗团队另有指示,否则请在最后一次服药后至少 130 天内继续使用避孕措施。与您的医疗团队交谈,找出最适合您和/或您伴侣的方法。如果您的伴侣在您接受比卡鲁胺治疗期间怀孕或怀孕,请告知您的医疗团队。此药可能会影响生育能力(让您的伴侣怀孕的能力)。
在局部眼部给药后,盐唑胺被吸收到系统性循环中。由于其对碳酸酐酶II(CA-II)的高亲和力,Brinzolamide广泛分布到红细胞(RBC)中,并表现出长半寿命全血(大约111天)。在人类中,形成了代谢物N-甲基盐酸酰胺,它也与CA结合并积聚在RBC中。 该代谢产物在存在盐酚胺的情况下主要与CA-1结合。 在血浆中,母丁唑胺和硝基甲基盐醇浓度均低,通常低于测定定量限(<10 ng/ml)。 与血浆蛋白的结合并不广泛(约60%)。 盐醇酰胺主要在尿液中以不变的药物的形式消除。 n-甲基二甲基胺也是在人类中,形成了代谢物N-甲基盐酸酰胺,它也与CA结合并积聚在RBC中。该代谢产物在存在盐酚胺的情况下主要与CA-1结合。在血浆中,母丁唑胺和硝基甲基盐醇浓度均低,通常低于测定定量限(<10 ng/ml)。与血浆蛋白的结合并不广泛(约60%)。盐醇酰胺主要在尿液中以不变的药物的形式消除。 n-甲基二甲基胺也是盐醇酰胺主要在尿液中以不变的药物的形式消除。n-甲基二甲基胺也是
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。