摘要:配备光学循环中心 (OCC) 的多原子分子能够在光学激发期间实现连续的光子散射,是推动量子信息科学发展的令人兴奋的候选者。然而,随着这些分子的尺寸和复杂性不断增加,复杂的振动电子耦合对光学循环的相互作用成为一个关键但相对未被探索的考虑因素。在这里,我们使用高分辨率分散激光诱导荧光和激发光谱对大规模含 OCC 分子中的费米共振进行了广泛的探索。这些共振表现为振动耦合,导致光学活性谐波带附近的组合带借用强度,这需要额外的再泵浦激光器才能实现有效的光学循环。为了减轻这些影响,我们探索通过苯环上的取代或 OCC 本身的变化来改变振动能级间距。虽然完全消除复杂分子中的振动耦合仍然具有挑战性,但我们的研究结果突出了显著的缓解可能性,为优化大型多原子分子中的光学循环开辟了新途径。
据报道,纳洛酮会导致该检测法出现假阳性结果 1 。该检测法可检测到的阿片类药物和/或阿片类药物代谢物的浓度因药物类别而异。半合成阿片类药物(如丁丙诺啡、氢可酮、氢吗啡酮和羟可酮)与该检测法有弱的交叉反应。该检测法无法检测到合成阿片类药物(如芬太尼和美沙酮)。如果您对半合成或合成阿片类药物的筛查感兴趣,请考虑订购广谱尿液毒理学筛查。羟可酮 100 ng/mL 该检测法还能检测到羟可酮的代谢物羟吗啡酮。苯环利定 25 ng/mL 据报道,曲马多会导致该检测法出现假阳性结果 1 。丙氧芬 300 ng/mL 在安大略省并未被广泛滥用。
DART-MS 基峰 ( m/z ) 甲基苯丙胺 C 10 H 15 N 149.120 150.128 α-吡咯烷基苯丁酮 C 14 H 19 NO 217.147 218.154 丁酮 C 12 H 15 NO 3 221.105 222.113 乙烯酮 C 12 H 15 NO 3 221.105 222.113 α-吡咯烷基苯戊酮 C 15 H 21 NO 231.162 232.170 苯环利定 C 17 H 25 N 243.199 244.207 替诺环利定 C 15 H 23 NS 249.155 250.163 癸酸诺龙 C 28 H 44 O 3 428.328 429.336 可卡因 C 17 H 21 NO 4 303.147 304.155 阿普唑仑 C 17 H 13 ClN 4 308.083 309.091 康力龙 C 21 H 32 N 2 O 328.251 329.259 海洛因 C 21 H 23 NO 5 369.158 370.165 呋喃基芬太尼 C 24 H 26 N 2 O 2 374.199 375.207 呋喃基芬太尼 3-
癌症、高热、脓毒症、肌萎缩侧索硬化症、溺水、急性心肌梗死、不明原因的婴儿猝死、枪伤、心房颤动、腹膜炎、呼吸窘迫综合征、自缢、黑色素瘤、慢性阻塞性肺病、刺伤、癫痫、十二指肠溃疡、外周血管疾病、器质性脑综合征、蛛网膜下腔出血、缺血性肠梗阻、绞窄、脑积水、触电、药物中毒、钝器伤、溃疡穿孔、肝硬化、脑血管意外、宫内胎儿死亡、暴露、白血病、帕金森病、营养不良、髋部骨折、腺癌、脾破裂、获得性免疫缺陷综合征、中毒、胃肠炎、肺栓塞、对乙酰氨基酚中毒、碳一氧化碳、尿脓毒症、病毒性肝炎、短暂性脑缺血发作、钝性头部创伤、腹主动脉瘤、高血压、盐酸苯环利定、骨髓炎、病态肥胖后遗症、神经母细胞瘤、淋巴瘤、酮症酸中毒、绞痛、葡萄球菌性脑膜炎、脑病、胰腺炎、恶性黑色素瘤、高钾血症、急性肾衰竭、间隔缺损、心肌梗死、胆囊炎、过敏性休克、肺炎、镰状细胞性贫血、多系统器官衰竭
脂质纳米粒子 (LNP) 广泛用于 mRNA 递送,阳离子脂质极大地影响生物分布、细胞摄取、内体逃逸和转染效率。然而,阳离子脂质的费力合成限制了有效候选物的发现并减慢了规模化生产。在这里,我们开发了一种基于合理设计的胺-硫醇-丙烯酸酯结合的一锅串联多组分反应,该反应能够快速(1 小时)且轻松地在室温下合成酰胺结合可降解 (AID) 脂质。对 100 种化学性质不同的 AID 脂质组合库进行结构-活性关系分析,鉴定出一种通常可提供有效脂质的尾状胺环烷基苯胺。实验和理论研究表明,嵌入的大苯环可以使脂质呈现更圆锥形,从而增强内体逃逸和 mRNA 递送。领先的 AID-脂质不仅可以介导 mRNA 疫苗的局部递送和 mRNA 治疗剂的全身递送,还可以改变肝嗜性 LNP 的趋向性,从而选择性地将基因编辑器递送到肺部,将 mRNA 疫苗递送到脾脏。
背景:认知障碍是精神分裂症的常见特征,抗精神病药物无法缓解。婆罗米俗称认知增强剂,可能是精神分裂症认知缺陷治疗的新前沿。目的:研究婆罗米对亚慢性苯环利定 (PCP) 精神分裂症大鼠模型中认知缺陷和大脑谷氨酸/N-甲基-D-天冬氨酸 (NMDA) 受体密度的减弱作用。材料和方法:给大鼠施用 PCP 或载体。PCP 组一半用婆罗米治疗。从新物体识别任务中获得代表认知能力的辨别率 (DR)。使用免疫组织化学测量前额皮质、纹状体、海马 1 至 3 角区 (CA1-3) 和齿状回 (DG) 中的 NMDA 免疫密度。结果:与对照组相比,PCP 组的 DR 显著降低。同时,前额皮质和 CA1-3 中的 NMDA 上调也随之发生,但纹状体和 DG 中没有。与单独使用 PCP 相比,使用婆罗米的 PCP 显著提高了 DR 评分。同时,前额皮质和 CA1-3 中的 NMDA 免疫密度也显著降低。使用婆罗米的 PCP 与对照组之间,大脑 NMDA 免疫密度没有显著差异。结论:PCP 给药大鼠的认知缺陷是由前额皮质和 CA1-3 中的 NMDA 上调介导的。有趣的是,婆罗米可以通过将这些大脑区域的 NMDA 密度降低至正常水平来恢复这种认知缺陷。
carbendazim(甲基苯甲酰唑-2-甲酯,CBZ)是一种系统性的苯二唑唑氨基甲酸核苷杀菌剂,可用于控制由子宫菌,comcycetes,basidiyiomycetes和deuterymycetes引起的多种真菌疾病。它广泛用于园艺,林业,农业,保存和园艺,这是由于其广泛的范围,并导致其在土壤和水环境系统中的积累,这最终可能通过生态链对非目标生物构成潜在威胁。因此,从环境中清除卡宾齐·残留物是一个紧迫的问题。目前,许多物理和化学治疗可有效降解carbendazim。作为一种绿色和高效的策略,微生物技术有可能将卡宾达齐降解为无毒且环境可接受的代谢产物,这反过来又可以从受污染的环境中消失。迄今为止,已经隔离并报告了许多carbendazim降解的微生物,包括但不限于芽孢杆菌,假单胞菌,犀牛,鞘翅目,鞘氨虫和气瘤菌。值得注意的是,所有菌株共有的共同降解特性是它们将carbendazim水解为2-氨基苯甲酰唑(2-AB)的能力。降解产物的完全矿化主要取决于咪唑和苯环的裂解。此外,目前报道的Carbendazim降解基因是MHEI和CBMA,它们分别负责破坏酯和酰胺键。本文回顾了卡宾齐山受污染环境的毒性,卡宾达齐的微生物降解和生物修复技术。这不仅总结并丰富了Carbendazim微生物降解的理论基础,而且还提供了对环境中carbendazim污染残基的生物修复的实际指导。
1.引言木质素是一种结构复杂、难以水解的聚集体,木质素、纤维素和半纤维素是构成植物骨架的三大天然高分子化合物,它们的重量约占植物重量的20%。另外,全世界可以生产大量的木质素,木质素廉价、无毒、无污染,是优良的绿色化学原料[1,2]。造纸工业会产生大量的造纸废液,从造纸废液中提取的木质素被称为工业木质素[3,4]。因此,从工业木质素中提取的木质素不仅成本低廉、可再生降解,而且具有多种活性功能基团,受到了人们的广泛关注。例如木质素的主要化学成分是木质素磺酸盐(图1)和碱木质素,它们带有一些表面活性基团,如羧基、酚羟基等亲水基团以及丙基和苯环等疏水基团,因此木质素在油田化学品、表面活性剂、环保缓蚀剂、沥青改性剂等绿色化学领域具有潜在的原料作用[5-9]。张建军[10]用甲醛对木质素磺酸盐进行改性,发现改性后的羟甲基化木质素磺酸盐在室温下对基浆有增粘作用,高温老化后有降粘、降滤失的效果;胺化木质素可以有效改善油田污泥的松散性,提高油田污泥的吸水率[11]。陈[12]以木质素磺酸盐、甲醛和伯胺/仲胺为原料,制备了一系列木质素磺酸盐Mannich碱钻井液处理剂,结果表明这些化合物在水基钻井液中具有增黏、降滤失、耐高温等作用。目前工业木质素中仍含有颜色较深的半纤维素、无机盐、低聚糖等杂质,这些杂质可能会对工业木质素基钻井液的性能产生较大影响。
背景 2023 年 3 月,CCPS 商业驾驶执照 (CDL) 司机的药物和酒精计划合规职责从县人力资源部转移到 CCPS HR。2022 年 12 月 31 日,CCPS 报告有 523 个职位需要 CDL 执照,其中 98% 在交通部门,包括公交车司机,2% 在其他部门。美国运输部 (DOT) 管理 CDL 司机的药物和酒精计划,该计划适用于拥有商用机动车 (CMV) 或指派员工操作这些车辆的雇主。美国运输部 (DOT) 和联邦汽车运输安全管理局 (FMCSA) 1991 年,国会通过了《员工测试法案》,建立了 CDL 药物和酒精测试计划。一般来说,所有驾驶 CMV 的 CDL 司机在所有公共道路上都必须接受 DOT 药物和酒精测试。这包括所有全职、兼职、间歇性和替代司机。 2000 年,国会成立了联邦汽车运输安全管理局,作为交通部下属的一个独立机构,旨在防止与 CMV 相关的死亡和伤害。联邦汽车运输安全管理局的活动通过强有力的安全法规执行,针对高风险承运人和 CMV 司机,改进安全信息系统和 CMV 技术,加强 CMV 设备和操作标准,以及提高安全意识,确保机动车运营安全。为了完成这些活动,管理局与联邦、州和地方执法机构、机动车运输行业、劳工和安全利益集团等合作。交通部与联邦汽车运输安全管理局共同制定了法规,要求 CMV 运营商保持 CDL 并接受酒精和药物测试。雇主有责任遵守这些要求,并可能对错误和不合规处罚负责。交通部酒精测试可识别 0.02 及以上的酒精浓度,药物测试要求对大麻、可卡因、阿片类药物、安非他明和苯环利定进行实验室测试(49 CFR 第 40 部分 F 分部)。
日本福冈——在《Science Advances》杂志上发表的一项研究中,九州大学工程学院副教授柳井伸宏领导的一组研究人员与九州大学宫田清副教授和神户大学小堀康弘教授合作,报告称他们已经在室温下实现了量子相干性:量子系统能够随着时间的推移保持明确状态而不受周围干扰影响的能力。这一突破是通过将发色团(一种吸收光并发射颜色的染料分子)嵌入金属有机骨架(MOF,一种由金属离子和有机配体组成的纳米多孔晶体材料)中实现的。他们的发现标志着量子计算和传感技术的重大进步。虽然量子计算被定位为计算技术的下一个重大进步,但量子传感是一种利用量子比特(经典计算中比特的量子类似物,可以存在于 0 和 1 的叠加中)量子力学特性的传感技术。可以采用各种系统来实现量子比特,其中一种方法是利用电子的固有自旋(与粒子磁矩相关的量子特性)。电子有两种自旋状态:自旋向上和自旋向下。基于自旋的量子比特可以存在于这些状态的组合中,并且可以“纠缠”,从而允许从另一个量子比特推断出一个量子比特的状态。通过利用量子纠缠态对环境噪声极其敏感的特性,量子传感技术有望实现比传统技术更高的分辨率和灵敏度的传感。然而,到目前为止,将四个电子纠缠并使其对外部分子作出反应,即使用纳米多孔 MOF 实现量子传感一直具有挑战性。值得注意的是,发色团可用于在室温下通过称为单重态裂变的过程激发具有所需电子自旋的电子。然而,在室温下会导致存储在量子比特中的量子信息失去量子叠加和纠缠。因此,通常只有在液氮水平温度下才能实现量子相干性。为了抑制分子运动并实现室温量子相干性,研究人员在 UiO 型 MOF 中引入了基于并五苯(由五个线性稠合苯环组成的多环芳烃)的发色团。“这项研究中的 MOF 是一种独特的系统,可以密集地积累发色团。此外,晶体内的纳米孔使发色团能够旋转,但角度非常受限,”Yanai 说道。