全面计划综合计划于2016年由Darmstadt董事会,市议会和县专员通过区域计划委员会通过。继续实施计划的各种目标和政策。分区条例提案,以修改分区或细分代码的文本或标准,可以由立法机构或APC启动。国家法律规定了计划委员会,以向立法机构或有关这些法规之一的拟议更改提出建议。具体来说,IC 36-7-4-607根据程序进行修改或部分废除分区或细分条例的程序,即:“…。首先,APC审查其作为土地使用计划的当地专家的角色。通常以修订的建议形式提供任何员工或APC成员的建议,以改善“公共利益”所考虑的条例,以考虑适当的计划概念,包括负责任的发展和增长,如IC 36-7-4-4-603和第18.175.020(b)和17.36.36.36.050 B. of the City和Courty Zoning Code and IC 36-7-4-4-603和第18.175.020(b)和17.36.36.36.050 B. of City and County and Counter and Counter and Counter and Counter and Code。当提案发起并最终由APC通过时,它将继续进行立法机构或机构以供考虑。在2023年,拟议的分区条例修正案由员工和立法机构启动。这些建议是由APC听到的,并继续参加市议会和/或县专员,其中包括以下内容:
范德华材料中的旋转缺陷为推进量子技术提供了有前途的平台。在这里,我们提出并演示了一种基于宿主材料的同位素工程的强大技术,以确切地提高嵌入式自旋缺陷的相干性能。专注于六角硼(HBN)中最近发现的负电荷硼空位中心(V B),我们在同位素上种植同位素纯化的H 10 B 15 N晶体。与HBN中的V b相比,同位素的自然分布与同位素的自然分布相比,我们观察到较窄且拥挤的V B旋转过渡以及延长的相干时间t 2和松弛时间t 1。对于量子传感,在我们的H 10 B 15 N样品中的V B中心在DC(AC)磁场敏感性中表现出4(2)个因子。对于其他量子资源,V B高级别水平的个体可寻址性实现了对三个最近的邻居15 N核自旋的动态极化和相干控制。我们的结果证明了同位素工程对增强HBN中量子自旋缺陷的特性的力量,并且可以很容易地扩展到改善广泛的范德华材料家族中的自旋Qub。
箭头分别标记 2 、 1 (V Bias = -2.0 V / -1.2 V,I = -50 pA / -200 pA)。c、放大 282 的 ZV 光谱
常见的压力源: • 与护理人员分离 • 陌生的环境(新的人、地方、设备) • 失去控制,无法使用身体和做出选择(躺下,被告知该做什么) • 过度刺激(太多人同时说话) 在 MRI 环境中提供帮助的方法: • 通过玩耍、微笑和在视线水平上交谈来建立融洽关系 • 尽可能多地让护理人员参与进来 • 鼓励使用熟悉的舒适物品(毯子、毛绒动物、玩具) • 允许探索环境(从不同角度看房间、触摸相机) • 模拟程序步骤(让一个人或毛绒动物躺在相机床上并骑在相机床上) • 使用游戏来教授和熟悉工具和设备(注射器游戏、娃娃模型扫描仪) • 在执行步骤之前解释步骤(“我现在要把床抬起来。”) • 分配任务(“你的工作是保持身体静止。”) • 提供选择(“你想戴上耳机还是想让我戴上耳机?”)
图1:VDW异质结构的无机组装。(a)几个从硅芯片伸出的悬臂的SEM显微照片。(b)示意图和(c)横截面高角环形暗场(HAADF)扫描透射电子显微镜(STEM)图像,显示了悬臂的多层金属涂层,可容纳2DM标本(样品中显示了多层MOS 2晶体中的样品)。(d)使用能量色散X射线光谱法在(c)中显示的区域的元素映射。(E)涂层过程后悬臂表面的AFM显微照片。均方根粗糙度值(r rms)在图像e上指示。 (F-H)采用的步骤将HBN晶体拾起到制造的悬臂上:(f)对齐,(g)接触和(h)升降。sem(l)和悬臂的光学(M)显微照片,拾取了厚(约40 nm)HBN晶体后。(i,j)拾取石墨烯晶体的步骤:对齐(I),接触和升降(J)。(n)光学显微照片显示了SIO 2上与石墨烯接触的悬臂(用虚线突出显示)。悬臂的灵活性可以准确控制层压过程。(k)石墨烯/HBN堆栈沉积在底部HBN晶体上。在整个底部HBN晶体被悬臂覆盖以选择性释放堆栈而不是将其捡起之前,层压过程要停止。(O)光学显微照片显示了氧化硅晶片上产生的异质结构,显示了较大的均匀区域。可以在补充第2节中找到有关其他样本的更多数据。
扭曲的二维(2D)Van der Waals(VDW)量子材料以其非同规性的超导性,金属绝缘体过渡(MOTT TRUSTITION),旋转液相等而闻名,为强电子相关提供丰富的景观。这种电子相关性也解释了扭曲晶体中的异常磁性。然而,由于缺乏理想的材料以及设计Moiré磁铁与它们的新兴磁性和电子特性相关的适当方法,因此限制了2D扭曲磁力领域的进步。在这里,我们设计了VDWMoiré磁铁,并证明了旋转两个单层的简单动作,即以各种扭曲角度旋转1T-NBSE 2和1T-VSE 2,产生了增强和淬灭的局部磁性磁矩的无均匀混合物,每个过渡金属杂种(V)和niobium(V)和Niobium(V)和NB)(NB)Antome。准确地说,扭曲角会影响每个组成层的局部磁矩。在VDWMoiréSuprattice中出现了引人注目的频带和巡回的铁磁性,后者令人满意的Stoner标准。这些特征是由原子晶格位点的轨道复杂化而不是层之间的层间耦合引起的。此外,在未介绍的杂波系统中鉴定出轨道磁性。结果提出了一种有效的策略,该策略是针对扭曲调节的现场磁性的新量子力学现象的洞察力。
摘要X射线光学的科学和技术已经走了很远,从而使X射线专注于高分辨率X射线光谱,成像和辐照。尽管如此,在X射线制度中,许多形式的裁缝波对光学状态的应用产生了重大影响。从根本上讲,这种差异源于所有材料在高频上接近统一的折射率的趋势,这使得X射线光分量(例如镜片)和镜像更难创建,并且通常效率更低。在这里,我们提出了一个新概念,用于X射线聚焦,基于将弯曲的波前诱导到X射线生成过程中,从而导致X射线波的内在聚焦。这个概念可以看作是有效地将光学元件整合为发射机制的一部分,从而绕过X射线光学组件施加的效率限制,从而实现了具有纳米级焦点斑点大小和微米尺度的纳米镜的创建。特别是,我们通过设计由自由电子驱动时会塑造X射线的大约VDW异质结构来实现此概念。聚焦热点的参数,例如侧向尺寸和焦点深度,是层间间距chirp和电子能量的函数。期待,创建多层VDW异质结构的持续进展开放了X射线纳米梁的焦点和任意形状的前所未有的视野。
摘要:宽带隙半导体,例如氧化镓 (Ga 2 O 3 ),因其在下一代高功率电子器件中的应用而备受关注。尽管单晶 Ga 2 O 3 衬底可以常规地从熔体中沿各种取向生长,但关于这些取向的影响的报道却很少。此外,由于缺乏 p 型掺杂,用 Ga 2 O 3 制造整流 pn 二极管一直很困难。在本研究中,我们通过改变以下三个因素在 β-Ga 2 O 3 上制造和优化了 2D/3D 垂直二极管:衬底平面取向、2D 材料选择和金属触点。使用高温相关测量、原子力显微镜 (AFM) 技术和技术计算机辅助设计 (TCAD) 模拟验证了我们的设备的质量。我们的研究结果表明,2D/3D β-Ga 2 O 3 垂直异质结通过基底平面取向(-201)进行优化,结合 2D WS 2 剥离层和 Ti 接触,并显示出记录的整流比(> 10 6 )同时具有导通电流密度(> 10 3 A cm -2 ),可用于功率整流器。
少原子层薄材料 [1–3] 的合成引发了大规模研究的火花,旨在操控其宏观特性。最近,二维磁有序材料也已生成。[4–7] 这些化合物的长程磁序似乎极易受到晶格畸变的影响,这是因为磁各向异性在稳定二维磁体中的长程有序方面发挥了作用。[8] 通过各种机制超快产生声子已被证明是在基本时间尺度上驱动和控制块体磁体自旋动力学的有力工具。[9–14] 这种途径也适用于范德华二维材料晶体,最近在铁磁 CrI 3 晶体中发现动态自旋晶格耦合就证明了这一点。 [15] 从自旋电子学角度来看,二维反铁磁体与铁磁体相比具有几个基本优势。主要优势在于基态更稳定,磁共振频率在 THz 范围内,比铁磁体高几个数量级。至关重要的是,反铁磁磁子与声子的耦合处于光学声子的能量范围内,这导致了最近有关二维反铁磁材料中杂化磁子-声子准粒子的报道。[16–20] 因此,光驱动的集体晶格模式具有在二维反铁磁体中光学控制长程磁序的潜力,这是基于已证实的可能性,即使光子能量远离其本征频率,也可以完全相干地驱动此类模式[21,22],也基于它们与磁子的强耦合。在此背景下,过渡金属三硫属磷酸盐(MPX3,其中M = Ni、Fe、Mn、... 和X = S、Se)代表了一类有趣的范德华反铁磁体。[23–26] 虽然据报道在独立的 NiPS3 块体单晶中 [27] 可以产生光学磁振子,但这种材料缺乏可扩展性到二维极限。事实上,实验证明,NiPS3 的单原子层在磁排序上与 MnPS3 [28] 和 FePS3 [25] 并无不同。