在解决希尔伯特第 17 个问题时,阿廷证明了任何多变量正定多项式都可以写成两个平方和的商。后来,雷兹尼克证明了阿廷结果中的分母总是可以选择为变量平方范数的 N 次方,并给出了 N 的明确界限。通过使用量子信息论中的概念(例如部分迹、最佳克隆映射和 Chiribella 的恒等式),我们给出了该结果的实数和复数版本的更简单的证明和微小的改进。此外,我们讨论了使用高斯积分构造希尔伯特恒等式,并回顾了构造复球面设计的基本方法。最后,我们应用我们的结果为实数和复数设置中的指数量子德芬内蒂定理提供了改进的界限。
在量子信息处理与计算中,凸结构在量子态、量子测量和量子信道的集合中起着重要作用。一个典型的凸结构问题是量子态鉴别,它从一组给定的量子态 {| Ψ i ⟩} ni =1 中区分出一个量子态,其中先验概率 pi 满足 ∑ nipi = 1,参见[1–4]。最近,[5–8] 考虑了不可用量子态到可用状态集合的最佳近似问题。对于给定状态 ρ,问题改写为从 {| Ψ i ⟩} ni =1 中寻找最难区分的状态,使得 ρ 与凸集 ∑ nipi | Ψ i ⟩⟨ Ψ i | 之间的距离最小[7],该问题的解决有利于可用量子资源的选择[9–11]。与量子相干性和量子纠缠的距离测度的选择类似,我们在这里采用迹范数作为距离的测度[12–18]。
我们通过引入和研究汉密尔顿量的相干性生成能力,探索通过幺正演化产生量子相干性的方法。这个量被定义为汉密尔顿量可以实现的最大相干性导数。通过采用相干性的相对熵作为我们的品质因数,我们在汉密尔顿量的有界希尔伯特-施密特范数约束下评估最大相干性生成能力。我们的研究为汉密尔顿量和量子态提供了闭式表达式,在这些条件下可以产生最大的相干性导数。具体来说,对于量子比特系统,我们针对任何给定的汉密尔顿量全面解决了这个问题,确定了导致汉密尔顿量引起的最大相干性导数的量子态。我们的研究能够精确识别出量子相干性得到最佳增强的条件,为操纵和控制量子系统中的量子相干性提供了有价值的见解。
量子相干性是量子力学的基本特征之一。量子相干源理论不仅在量子理论中而且在实际应用中都发挥着重要作用[1–4]。量化量子态的相干性是量子相干源理论的核心任务之一。Baumgratz 等人提出了一个严格的框架来量化相干性[5]。该框架规定了良好的相干性测度必须满足几个条件。基于该框架,人们针对固定正交基提出了许多合适的测度[6–13]。相干性相对熵 (REOC) 和相干性 l 1 范数是两个典型的量子相干性测度,已被证明能够满足这些条件[5]。[12] 的作者提出了一种基于 Tsallis 相对 α 熵的相干性测度。作者证明了上述相干性测度满足(C1)的条件,
与图相关的自然过渡矩阵的混合(或准随机)属性可以通过其与完全图的距离来量化。不同的混合属性对应于测量此距离的不同范数。对于密集图,Chung、Graham 和 Wilson 在 1989 年的开创性工作中证明了两个这样的属性(称为谱扩展和均匀性)是等价的。最近,Conlon 和 Zhao 使用著名的 Grothendieck 不等式将这种等价性扩展到稀疏顶点传递图的情况。在这里,我们将这些结果推广到非交换或“量子”情况,其中过渡矩阵成为量子信道。特别是,我们表明,对于不可约协变量子信道,扩展等同于图的均匀性的自然类似物,推广了 Conlon 和 Zhao 的结果。此外,我们表明,在这些结果中,非交换和交换的格罗滕迪克不等式产生了最佳常数。
在本课程的这一部分,我们将介绍一种描述量子态和操作的新方法。到目前为止,我们将量子态描述为范数为 1 的向量,将操作描述为酉矩阵。然而,这有一些局限性 - 例如,如果我测量 | + ⟩ ,然后做一个 Hadamard 门,状态会是什么?答案是 | + ⟩ 或 |−⟩,具体取决于我的测量结果。这会在我们的程序状态中创建一种分支,并且由于有许多连续的分支,跟踪程序的状态可能会很麻烦。我们可能必须这样推理:“如果我第一次测量的结果是 A,而第二次测量的结果是 B...那么我处于状态 | Ψ ⟩。现在我们来看看一种描述量子态的不同方法,称为密度算子,它有几个优点。首先,它们允许我们将我们的电线视为状态分布,从而解决了上述问题。在课程的后面,我们将看到它们还允许我们定义两种状态之间的可区分性度量 - 以限制区分器区分两种不同状态的概率。
状态 | 0 ⟩ 和 | 1 ⟩ 称为基态,上述方程的状态为:任何长度为 1 的基态的线性组合都是有效状态。在谈论状态长度时,我们将其视为矢量。请记住,这对应于量子力学的第一公设。重要的是,给定状态 | ψ ⟩ = α | 0 ⟩ + β | 1 ⟩ 的物理量子比特,不可能找出 α、β。我们只能测量量子比特。让我们举一个测量的例子。如果我们在标准基础上进行测量,基态为 | 0 ⟩ 和 | 1 ⟩ ,那么我们将有 | α | 2 的概率观察到状态 | 0 ⟩ ,并以 | β | 2 的概率得到状态 | 1 ⟩ 。这为为什么状态的范数应该为 1 提供了更多理由。与经典计算的情况一样,我们使用多个量子比特在量子计算机中存储数据。两个量子比特的可能状态是什么?基态应该是 | 0 ⟩| 0 ⟩ 、 | 0 ⟩| 1 ⟩ 、 | 1 ⟩| 0 ⟩ 和 | 1 ⟩| 1 ⟩ 。我们将状态 | 0 ⟩| 0 ⟩ 与状态 | 00 ⟩ 等同,其他基态也类似。和以前一样,我们会说这些状态的任何线性组合都是有效状态。
在本文中,我们应用量子信道和开放系统状态演化的理论,提出了一种用于量子隐马尔可夫模型 (QHMM) 的酉参数化和高效学习算法。我们将任何具有非平凡算子和表示的量子信道视为具有隐藏动态和可测量发射的随机系统。通过利用量子信道更丰富的动态,特别是通过混合状态,我们证明了量子随机生成器比经典生成器具有更高的效率。具体而言,我们证明了可以在量子希尔伯特空间中使用比经典随机向量空间少二次的维度来模拟随机过程。为了在量子硬件上的电路计算模型中实现 QHMM,我们采用了 Stinespring 的扩张构造。我们表明,可以使用具有中间电路测量的量子电路有效地实现和模拟任何 QHMM。在酉电路的假设空间中,可行的 QHMM 学习的一个关键优势在于 Stinespring 扩张的连续性。具体而言,如果通道的酉参数化在算子范数中接近,则相应通道在钻石范数和 Bures 距离中也将接近。此属性为定义具有连续适应度景观的高效学习算法奠定了基础。通过采用 QHMM 的酉参数化,我们建立了一个正式的生成学习模型。该模型形式化了目标随机过程语言的经验分布,定义了量子电路的假设空间,并引入了一个经验随机散度度量——假设适应度——作为学习成功的标准。我们证明,该学习模型具有平滑的搜索景观,这归因于 Stinespring 扩张的连续性。假设空间和适应度空间之间的平滑映射有助于开发高效的启发式和梯度下降算法。我们考虑了四种随机过程语言的例子,并使用超参数自适应进化搜索和多参数非线性优化技术训练 QHMM,这些技术应用于参数化的量子拟设电路。我们通过在量子硬件上运行最优电路来确认我们的结果。
基于参数化量子电路的量子机器学习 (QML) 模型经常被誉为量子计算近期“杀手级应用”的候选模型。然而,对这些模型的经验和泛化性能的理解仍处于起步阶段。在本文中,我们研究了如何平衡由 Havl´ıˇcek 等人 [ 1 ] 以及 Schuld 和 Killoran [ 2 ] 提出的两个著名 QML 模型的训练准确度和泛化性能(也称为结构风险最小化)。首先,利用与易于理解的经典模型的关系,我们证明两个模型参数(即图像和的维数和模型使用的可观测量的 Frobenius 范数)密切控制着模型的复杂性,从而控制着其泛化性能。其次,利用受过程层析成像启发的思想,我们证明这些模型参数也密切控制着模型捕捉训练示例集中相关性的能力。总之,我们的结果为 QML 模型的结构风险最小化提供了新的选择。
量子信息科学提供了一种通过应用量子通信来确保信息安全的替代方法。量子通信,或者更具体地说,量子密钥分发 (QKD),基于通过传输单光子形式的量子载体来确保信息安全的物理过程。单光子通过量子信道传输,该信道可以是自由空间或光纤。密钥分发过程会创建安全密钥。这将范式从数学方法转变为确保信息安全的物理方法。量子通信利用量子态准备和测量的特性以及纠缠等固有量子现象来创建安全通信网络,并实现一系列长期应用,包括分布式传感和远程或分布式量子计算。开发量子通信系统的主要动机是创建安全通信网络以防范数据安全威胁。在这里,我们探讨了可能导致量子互联网的领域发展。