iabetes mellitus(DM)是印度尼西亚的非传染性疾病。这项研究探讨了茉莉香肠植物化学成分对处理DM的潜力。使用多个数据库和计算机辅助药物发现工具在计算机分析中证明了茉莉花Sambac作为DM治疗候选者的潜力。本研究利用PubChem数据获得了分析的生物活性化合物,同时使用的受体是从RSCB获得的(PDB ID:4LC9)。使用swissadme测试了化合物的ADME特性。此外,还采用了瑞士目标预测和DB弦来分别分析靶蛋白和代谢途径,生物活性和相关疾病。通过使用PYRX版本0.8的分子对接进行了进一步的分析,使用Biovia Discovery Studio Visualizer版本4.5进行可视化。从jasminum sambac中包含的化合物的搜索结果中发现其中包含几种活性化合物。Some of these compounds passed the ADME criteria, compounds (Z, Z,Z)-3,6,9-Dodecatrien -1-ol,( Z)- Jasmone, linalool, Nerolidol, (-)-alpha-Cadinol, Benzenemethanol, Benzaldehyde, Linalyl benzoate, and 2,2,3,4-Tetramethylpentane.此外,对发生的分子相互作用,这些化合物的结合与人类中发现的葡萄糖激酶酶的结合以及它们的潜力如何成为糖尿病的抑制剂,进行了深入的分析。这增加了开发新药物化合物以抑制糖尿病的可能性。在植物茉莉香肠中发现的化合物,特别是苯基苯甲酸甲醇和苯甲酰甲醇,与葡萄糖酶蛋白具有强大的键合能力。关键字:茉莉花sambac |糖尿病| GCK | Linalyl苯甲酸酯|在硅中,这种称为糖尿病(DM)的疾病的特征是血糖(血糖)水平高于正常水平,尤其是当空腹血糖水平高于或等于126 mg/dl时,血糖水平等于或大于200 mg/dl。由于当今儿童不受管制的生活方式,这种疾病现在影响了许多年轻人。这种情况也是由几个环境变量引起的,由于其生活环境,许多人患有糖尿病。除了其他变量外,糖尿病患者的产生更有可能患上糖尿病1糖尿病,糖尿病是一种具有高血糖水平的异质疾病。呈现了糖尿病的当前分类,并比较了1型和2型糖尿病的主要特征。此外,在禁食和口服葡萄糖中使用准确的生化诊断标准和血红蛋白A1C(HBA1C)
摘要食品排毒中的抗氧化剂可以使细胞活性氧(ROS)和保护生物体。类黄酮是自然界重要的抗氧化剂起源之一,具有各种促进健康的功能,并且是模型和医疗植物中的热门研究主题。但是,主要粮食作物的小麦(Triticum Aestivum L.)的进展需要赶上。在这里,我们收集了200多个现代中国小麦品种,并分析了它们的类黄酮。一些小麦类黄酮在维生素C上显示出较高的ROS-氧化活性,但它们在谷物中的含量约为幼苗(小麦草)的1/20。小麦草的类黄酮提取物(很少)以剂量依赖性和性别特异性的方式成功拉长了模型动物的寿命(果蝇Melanogaster,W 118)。我们表征了主要的类黄酮和孤立的品种,积累了更多类黄酮。此外,茉莉酸(JA)处理诱导类黄酮生物合成,产生更多的类黄酮和较高的抗氧化电位。这项工作为有希望的小麦品种提供了信息,并采取了进一步的增强策略,以增强促进健康的潜力。
摘要:植物激素又称植物生长调节剂,可调节植物的各种生理过程,包括发芽、生长以及对生物和非生物胁迫的反应。由真菌、细菌和病毒等病原体引起的植物疾病通常会改变激素途径,导致植物中同时诱导拮抗激素和协同激素。然而,在抗性品种中,激素反应遵循更连续的模式。植物激素信号通路主要沿着两个拮抗轴极化:一侧是水杨酸 (SA) 和茉莉酸 (JA) 途径,另一侧是乙烯途径。除了 SA、JA 和乙烯之外,其他生长调节剂,如生长素、油菜素类固醇、细胞分裂素和脱落酸 (ABA),也在植物对生物胁迫的反应中发挥重要作用,并且因其在植物-病原体相互作用中的重要性而越来越受到重视。病原体可以调节激素的生物合成和信号传导,从而抑制植物的防御能力并改变细胞环境,促进其感染和增殖。在本文中,我们将回顾对植物激素的功能和调节、植物防御反应的调节以及植物激素与防御途径之间的协同作用和串扰的最新进展。
茉莉酸(JA),乙烯(ET)和水杨酸(SA)是三个主要的植物激素协调植物防御反应,这三个均与防御真菌病原体氧气的防御有关。但是,它们独特的作用方式和可能的相互作用仍然未知,部分原因是所有有关其活动的空间信息均缺乏。在这里,我们着手通过使用新开发的基于荧光的转录记者线的实时显微镜来探测植物免疫的这一空间方面。我们创建了一个植物免疫系统启动子(GG-PIPS)的Greengate矢量收集,使我们能够以单细胞分辨率对免疫途径的局部激活进行成像。使用此系统,我们证明了SA和JA在邻近真菌定植位点的不同的根细胞中彼此之间的空间分开作用,而ET则有助于这两组。sa和et诱导了过度敏感的反应,作为第一道防线,而JA和ET在单独的第二道防线中控制了针对病原体的积极防御。缺乏解决单个细胞水平上植物免疫反应的这种方法,这项工作表明,基于显微镜的方法可以详细了解植物免疫反应。
csir净生活科学问题与解决方案Q1。关于植物植物植物(PHY),蓝细菌植物色素1(CPH1)和细菌植物色素样蛋白(BPHP),以下哪种陈述中的哪一种是不正确的?(a)PHY在C末端部分中有两个PRD域。(b)CPH1和BPHP在N末端部分具有组氨酸激酶结构域。(c)GAF结构域存在于PHY,CPH1和BPHP的N末端部分中。(d)形成连锁的半胱氨酸残基位于诸如PHY和CPH1之类的规范植物色素中的GAF结构域中。Q2。 以下哪一项称为结核酸? (a)甲基甲酸酯(b)顺式 - 果酮(C)jasmonoyl-1-β-葡萄糖(d)12-羟基 - (+) - 7- iSojasmonate Q3。 大米,SD-1的主要半障碍基因中的缺陷导致具有短而厚的浮雕和改善的住宿耐药性的品种。 该基因与以下哪种植物素有关? (a)gibberellins(b)脱甲酸(c)茉莉酸(d)水杨酸Q4。 在模型植物拟南芥中,蛋氨酸是生物合成中的前体氨基酸:(a)生物碱(b)葡萄糖醇酸盐(c)苯酚(C)酚(d)萜类化合物Q5。 在每个正常的人类红细胞中大约存在多少血红蛋白? (a)19 pg(b)29 pg(c)39 pg(d)49 pg Q6。 涉及以下涂层坑的颈部捏合以形成突触前末端的内吞囊泡的夹克中的哪一项? (a)Synaptojanin(b)AP2(C)网格蛋白(D)DynaminQ2。以下哪一项称为结核酸?(a)甲基甲酸酯(b)顺式 - 果酮(C)jasmonoyl-1-β-葡萄糖(d)12-羟基 - (+) - 7- iSojasmonate Q3。大米,SD-1的主要半障碍基因中的缺陷导致具有短而厚的浮雕和改善的住宿耐药性的品种。该基因与以下哪种植物素有关?(a)gibberellins(b)脱甲酸(c)茉莉酸(d)水杨酸Q4。在模型植物拟南芥中,蛋氨酸是生物合成中的前体氨基酸:(a)生物碱(b)葡萄糖醇酸盐(c)苯酚(C)酚(d)萜类化合物Q5。在每个正常的人类红细胞中大约存在多少血红蛋白?(a)19 pg(b)29 pg(c)39 pg(d)49 pg Q6。涉及以下涂层坑的颈部捏合以形成突触前末端的内吞囊泡的夹克中的哪一项?(a)Synaptojanin(b)AP2(C)网格蛋白(D)Dynamin
摘要:番茄果实在贮藏期间极易受到主要病原菌灰葡萄孢(B. cinerea)的侵染。最近的研究表明,自噬在植物防御生物和非生物胁迫中至关重要。自噬相关基因5(ATG5)在自噬体的完成和成熟中起关键作用,并被灰葡萄孢菌快速诱导,但ATG5在番茄采后果实抗灰葡萄孢菌中的潜在机制尚不清楚。为了阐明SlATG5在番茄果实抗灰葡萄孢菌中的作用,本研究采用CRISPR/Cas9介导的SlATG5敲除技术。结果表明,slatg5突变体对灰葡萄孢菌的感染更加敏感,病害症状更加严重,抗病酶几丁质酶(CHI)、β-1,3-葡聚糖酶(GLU)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)等活性降低。此外,研究还观察到接种灰葡萄孢菌后,slatg5突变体中水杨酸(SA)信号相关基因SlPR1、SlEDS1、SlPAD4、SlNPR1的相对表达量高于WT,而茉莉酸(JA)信号相关基因SlLoxD和SlMYC2的相对表达量低于WT。这些结果表明,SlATG5 通过抑制 SA 信号通路和激活 JA 信号通路正向调控番茄果实对灰霉病菌的抗性反应。
植物暴露于非常不同的攻击者,包括微生物病原体和草食昆虫。为了保护自己,植物已经发展了防御策略,以抵消潜在的入侵者。植物防御信号研究的最新进展表明,根据遇到的入侵者的类型,植物能够差异激活诱导,广谱防御机制。植物激素水杨酸(SA),茉莉酸(JA)和乙烯(ET)是防御信号通路网络中的主要参与者。在SA-,JA-和ET依赖性信号通路之间的串扰被认为与对防御反应进行微调有关,最终导致了防御反应的最佳组合以抵抗入侵者。这些信号化合物的生物合成途径的基因工程以及模仿其作用方式的保护化学物质的开发为开发新策略的作物保护提供了有用的工具。但是,有证据表明,对微生物病原体的抗药性与对草食昆虫的抗药性之间的抗性:一旦植物的条件表达对微生物病原体的抗性,它可能会更容易受到食草动物的攻击,而反之亦然。然而,病原体和抗昆虫抗性之间的贸易证据是矛盾的。本综述集中于有关SA-,JA-和ET依赖性诱导对微生物病原体和草食性昆虫的抗性的最新实验证据。此外,我们将解决以下问题,无论是通过基因工程或通过使用防御信号的植物保护剂来操纵国防信号通路,是否会增强植物对潜在入侵者的免疫力,还是将成为作物保护策略的负担。
磷营养很长时间以来一直在影响植物的花卉转变,但潜在的机械主义尚不清楚。拟南芥磷酸转运蛋白磷酸盐1(PHO1)在从根到芽的磷酸转移中起关键作用,但是它是否以及如何调节花卉转变是未知的。在这里,我们表明PHO1的敲除突变延迟在长期和短期条件下开花。Pho1突变体的晚开花可以通过玫瑰花结或射击顶点的Pi补充来部分挽救。嫁接测定法表明,PHO1突变体的晚开花是磷酸盐从根到芽的磷酸易位受损的结果。SPX1和SPX2的基因敲除突变,这是两个磷酸盐饥饿反应的两个负调节剂,部分挽救了PHO1突变体的晚期流动。pho1在开花时间调节中对Pho2(Pho2的负调节剂)表示同义。损失PHO1会抑制某些花卉激活剂的表达,包括编码佛罗里语的FT,并在芽中诱导某些花卉阻遏物的表达。遗传分析表明,至少对于PHO1突变体的晚开花,至少部分缩进的茉莉酸信号传导。此外,我们发现pho1的水稻pho1; 2,Pho1的同源物在花卉过渡中起着类似的作用。这些结果表明PHO1整合了磷营养和开花时间,并且可以用作调节植物中磷营养介导的开花时间的潜在目标。
摘要。樱桃番茄 ( Lycopersicon esculentum ) 是全球消费量很大的新鲜蔬菜,以其跃变性成熟特性和营养丰富而闻名。尽管很受欢迎,但保质期短、易受微生物腐烂和机械损伤等固有挑战导致了严重的采后损失。对含有维生素 C、类黄酮和类胡萝卜素等有益健康化合物的新鲜果蔬的持续需求推动了市场增长,因为它们具有公认的健康益处和鲜明的视觉吸引力。当前的审查深入探讨了对保持樱桃番茄质量和延长保质期至关重要的采后处理实践。主要做法包括采收、预冷、清洁、消毒、分类、分级、包装、储存和运输以及该领域的进步。强调了这些做法对总体采后质量损失的影响,特别是在热带和亚热带气候下,重点是减轻生物和非生物胁迫。该研究回顾了樱桃番茄采后管理的一系列技术,包括物理和化学处理。物理处理包括低温调节、受控气氛 (CA)、改良气氛包装 (MAP)、封装和紫外线照射。化学处理包括可食用涂层、褪黑激素、水杨酸盐和茉莉酸酯、多胺和各种其他化学物质。物理和化学处理都促进受控气体扩散,建立外部和内部气体之间的平衡,延长保质期并保持质量。总之,本研究为采后管理实践和创新技术提供了宝贵的见解,解决了樱桃番茄采后管理相关的挑战。
应对农业领域的紧迫挑战需要迅速推进育种计划,特别是对于葡萄等多年生作物。我们超越了传统的双亲数量性状基因座 (QTL) 定位,进行了一项全基因组关联研究 (GWAS),涵盖了智利育种计划中的 588 个葡萄品种,跨越三个季节并测试了 13 个关键的产量相关性状。一个强有力的候选基因 Vitvi11g000454 位于第 11 号染色体上,与植物通过茉莉酸信号对生物和非生物胁迫的反应有关,与浆果宽度有关,并有可能在葡萄育种中提高浆果大小。我们还在 2、4、9、11、15、18 和 19 号染色体上定位了与采后性状相关的新型 QTL,拓宽了我们对决定果实采后行为(包括腐烂、皱缩和重量减轻)的遗传复杂性的了解。利用基因本体注释,我们在性状和仔细研究的候选基因之间进行了比较,为未来植物育种中的性状特征识别工作奠定了坚实的基础。我们还强调了在 GWAS 分析中仔细考虑响应变量选择的重要性,因为在我们的研究中使用最佳线性无偏估计量 (BLUEs) 校正可能导致葡萄性状中一些常见 QTL 被抑制。我们的研究结果强调了开拓长期保存性状的非破坏性评估技术的必要性,为葡萄育种者和栽培者提供了改善采后鲜食葡萄质量和减少浪费的见解。