Euphorbia esula L.(大戟科)是一种入侵性杂草,是上大平原地区大部分地区的主要问题,包括蒙大拿州、南达科他州、北达科他州、内布拉斯加州和怀俄明州的部分地区。仅北达科他州的侵扰就对该州的野生动植物、旅游业和农业经济造成了严重的经济影响,1991 年估计每年达 8700 万美元。大戟科通过取代本地草类和草本植物来破坏草原和荒地生态系统。它对该地区许多国家公园、国家荒地和州立休闲区的受保护生态系统构成了重大威胁。本研究探讨了使用 Landsat 7 增强型专题制图仪 (Landsat) 影像及其衍生产品作为管理工具,绘制位于北达科他州西南部西奥多·罗斯福国家公园的叶状大戟科植物地图。使用无监督聚类方法绘制叶状大戟科植物类别,总体分类准确率约为 63%。Landsat 影像的使用并未提供详细绘制小片杂草所需的准确度。但是,它展示了绘制大规模(区域)叶状大戟科植物发生情况的潜力。本文就 Landsat 影像作为资源管理者绘制和监测大面积叶状大戟科植物种群的工具的适用性提出了建议。
摘要:生物防治是一种控制害虫的技术,无论是使用其他生物体使用其他生物体,昆虫和螨虫,杂草,杂草还是影响动物或植物的病原体。因此,本文的目的是使用标准的微生物学方法研究了从尼日利亚的河流和阿比亚州收集的trichoderma harzianum trichoderma harzianum的可可糖(Colocasia esculenta)腐败真菌的目的。获得的结果表明,分离的真菌是曲霉,尼日尔曲霉,粘液sp和penicillium and trichorderma sp。拮抗真菌被分子鉴定为trichoderma harzianum菌株A0H287。生物拮抗剂T. harzianum的抑制作用表明,它使尼日尔的生长降低了50%,粘液sp降低了34.1%,青霉sp降低了70%,而弗拉夫斯则降低了63.7%。研究表明,生物拮抗剂trichoderma在减少大多数致病真菌的生长方面表现出有效性,因此可以建议作为化学杀菌剂的替代品。doi:https://dx.doi.org/10.4314/jasem.v28i3.10 Open Access策略:Jasem发表的所有文章都是Open-Access文章,并且可以免费下载,复制,复制,重新分发,重新分发,重新分发,翻译和阅读。版权策略:©2024。作者保留了版权和授予JASEM的首次出版物的权利,同时在创意共享署名4.0 International(CC-By-4.0)许可下获得许可。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Akomah-Abadaike,O。N; Didia,H。E.(2024)。 J. Appl。将本文列为:Akomah-Abadaike,O。N; Didia,H。E.(2024)。J. Appl。从尼日利亚河流和阿比亚州收集的Trichoderma harzianum的Cocoyam(Colocasia esculenta)变质真菌。SCI。 环境。 管理。 28(3)699-706日期:收到:2024年1月18日;修订:2024年2月24日;接受:2024年3月12日发表:2024年3月29日关键字:Trichoderma Harzianum,Cocoyam,Cocoyam,抑制作用,Penicillium SP,Biocontrol Cocoyam是一种多年生的单子叶植物和家族的草本植物。 这是非洲,亚洲和太平洋的许多发展中国家的重要主食。 这是世界上最古老的粮食作物之一,据信是在最终传播到世界其他地区之前在东南亚首次被驯化的。 最常见的两个物种是共老见esculenta(红色类型或芋头)和叶thosoma sagittifolium(白色类型或tannia)。 在尼日利亚,Cocoyam主要用于可食用的Corms,作为补充山药和木薯的碳水化合物的来源以及用于药用目的(Bartholomew等,2017)。 Cocoyam被认为主要由低收入者和经济脆弱的群体消耗。 尼日利亚目前是世界领先SCI。环境。管理。28(3)699-706日期:收到:2024年1月18日;修订:2024年2月24日;接受:2024年3月12日发表:2024年3月29日关键字:Trichoderma Harzianum,Cocoyam,Cocoyam,抑制作用,Penicillium SP,Biocontrol Cocoyam是一种多年生的单子叶植物和家族的草本植物。 这是非洲,亚洲和太平洋的许多发展中国家的重要主食。 这是世界上最古老的粮食作物之一,据信是在最终传播到世界其他地区之前在东南亚首次被驯化的。 最常见的两个物种是共老见esculenta(红色类型或芋头)和叶thosoma sagittifolium(白色类型或tannia)。 在尼日利亚,Cocoyam主要用于可食用的Corms,作为补充山药和木薯的碳水化合物的来源以及用于药用目的(Bartholomew等,2017)。 Cocoyam被认为主要由低收入者和经济脆弱的群体消耗。 尼日利亚目前是世界领先28(3)699-706日期:收到:2024年1月18日;修订:2024年2月24日;接受:2024年3月12日发表:2024年3月29日关键字:Trichoderma Harzianum,Cocoyam,Cocoyam,抑制作用,Penicillium SP,Biocontrol Cocoyam是一种多年生的单子叶植物和家族的草本植物。这是非洲,亚洲和太平洋的许多发展中国家的重要主食。这是世界上最古老的粮食作物之一,据信是在最终传播到世界其他地区之前在东南亚首次被驯化的。最常见的两个物种是共老见esculenta(红色类型或芋头)和叶thosoma sagittifolium(白色类型或tannia)。在尼日利亚,Cocoyam主要用于可食用的Corms,作为补充山药和木薯的碳水化合物的来源以及用于药用目的(Bartholomew等,2017)。Cocoyam被认为主要由低收入者和经济脆弱的群体消耗。尼日利亚目前是世界领先
与森林砍伐、碳循环、酸沉降和污染有关的重要问题。此外,全球植物信息在经济方面也很有用,例如调查粮食和纤维资源状况。许多研究人员已经研究了光学数据的信息内容,重点研究了 Landsat 传感器 [即多光谱扫描仪 (MSS) 和专题制图仪 (TM)]。遥感和植物学文献中充满了关于 MSS 和 TM 图像数据的潜在或实际用途的论文(请参阅 Colwell (1983) 的摘要)。其他研究人员已经探索了主动微波数据的信息内容(请参阅 Ulaby 等人 (1983) 的摘要)。很少有研究人员将光学和主动微波数据结合起来用于植被特征描述(Wu,1981)。在本文中,我们介绍了对加利福尼亚州某地区航天器拍摄的光学和有源微波图像数据进行综合研究的结果,该地区的草本植物和木本植被种类繁多。 1984 年 10 月,美国国家航空航天局 (NASA) 进行了第二次航天飞机成像雷达 (SIR) 任务。第一次任务 (SIR-A) 于 1981 年 11 月完成。它是一台合成孔径雷达 (SAR),工作在 L 波段,波长为 23.5 厘米,微波发射和接收均为水平极化(即 HH 极化组合)。SIR-A 以入射角观察地球表面
摘要:氮肥利用率低是限制植物生长发育的主要因素之一,农业上需要施用高剂量的氮肥才能实现高产。然而,大部分氮肥未被植物利用,污染了环境。这种情况可以通过提高植物的氮利用效率 (NUE) 来改善。NUE 是一种由遗传和环境因素之间的多种相互作用驱动的复杂性状,改善 NUE 需要从根本上了解植物氮代谢的关键步骤——吸收、同化和再动员。本综述总结了 20 年来利用生物工程改造氮代谢以增加作物生物量积累和产量的研究。结构和调控基因的表达最常使用过表达策略来改变,但也使用了 RNAi 和基因组编辑技术。木本植物受到特别关注,因为它们具有重要的经济意义,在生态系统中发挥着至关重要的作用,与草本植物有着根本的区别。本综述还探讨了转基因植物的意外影响问题,这些影响包括氮代谢改变,例如早期开花,这是目前很少受到关注的研究课题。文中讨论了使用各种方法在全球气候变化的背景下提高作物氮利用效率的未来前景,这对于可持续农业的发展至关重要。
缺乏对抗木质甲壳虫Fastidiosa(XF)的可持续策略突出了对新型实用抗菌工具的紧迫需求。在这项研究中,乳酸乳酸乳酸亚生成乳杆菌。乳酸菌株ATCC 11454(乳酸乳杆菌)以其生产奈瑟蛋白A而闻名,对XF亚种进行了体外测试。pauca。初步研究表明,乳乳杆菌对XF表现出强的拮抗活性。因此,通过体外和植物实验的结合,对尼沙蛋白A的功效进行了全面评估。采用可行的定量PCR,点测定,浊度降低测定,荧光显微镜和透射电子显微镜的体外研究表明,在最小的0.6 mg/mL的最小致死浓度下,尼沙蛋白对XF的鲁棒性杀菌作用。由荧光和透射电子显微镜产生的结果表明,尼沙蛋白直接和快速与XF细胞的膜相互作用,从而导致细菌细胞在几分钟内破坏。在Planta测试中,Nisin还证明了在接种后74天无症状74天内解决烟草本植物中XF感染的能力。此外,RPLC-ESI-MS/MS分析表明,尼生蛋白转移到植物的所有部分,并保持完整长达9天。首次,这项研究强调了基于尼我们的策略,作为一种现实且环保的方法,可以进一步研究该领域的XF感染。
虽然生物质废弃物数量庞大,但这些材料及其生产过程通常对环境友好、成本低、无害且易于扩展。这些优势使生物质材料成为解决环境污染问题的绝佳选择,主要是通过替代可持续性较差的同类材料。这也适用于电池等储能系统,其中多个组件对环境影响很大。在此背景下,为了应对日益增长的能源需求,人们对锂硫电池进行了广泛的研究,预计其商业化程度将不断提高。具体而言,近年来,锂硫电池可再生正极材料的使用取得了进展,这一领域得到了广泛的关注,其中对从生物质中获得的碳质材料 (C) 和/或活性炭 (AC) 进行了深入研究。本文通过对来自天然废物的碳质材料进行分类和讨论,根据生物质的类型对这一领域进行了回顾:(1)木本植物,(2)草本植物和农业,(3)水生植物,(4)动物和人类,以及(5)受污染和工业生物质废料。此外,还对所有用作硫载体的多孔碳或活性炭的来源、合成参数、物理性质以及锂硫电池中的电化学性能进行了详尽的评估。目的是对从生物质资源中制备碳的进展进行一般性描述,重点研究这些材料的结构和电化学性质(重点是过去十年),并对这一发展领域的未来研究进行展望。
起伏平原生态区 – 这是一个起伏平缓的地区,包含牧场,溪流和河流从西向东流淌,流向东部和东南部的跨林区和草原区。起伏平原生态区南部与爱德华兹高原生态区接壤,西部与高平原生态区接壤。土壤从细沙到粘土和粘壤土不等。本地草类包括小须芒草、蓝格拉玛草、侧穗格拉玛草、印第安草和沙须芒草。由于历史上的牲畜放牧习惯和景观中缺乏自然火灾,该地区的许多牧场已被一年生和多年生草本植物、豆科植物和木本植物入侵。主要木本植物包括红莓桧、丝兰、牧豆树、莲藕、朴树、大叶木、仙人掌、臭鼬灌木、麻黄、李子、西部无患子、小叶漆树、小栎、塔萨希罗、阿加里托、猫爪相思树、酸橙刺柏、沙鼠尾草等。牧豆树草原占据了这一生态区域的大片地区。大溪沿岸的洼地里有美国榆树、柳树、山核桃和三角叶杨。石灰岩山脊和陡峭的地形提供了更大的木本植物多样性,并为各种野生动物提供了栖息地。(德克萨斯州公园和野生动物部)
近年来,可用于帮助现场植物识别的智能手机应用程序数量激增。可用的方法有很多,从基于人工智能 (AI) 和自动图像识别自动识别植物的应用程序,到需要用户使用传统二分法键或多访问键的应用程序,再到可能只有一系列图像而没有明确的系统来识别任何感兴趣的物种的应用程序。所有照片均由作者拍摄。在这里,我只关注那些可用于从上传的图像中自动识别植物的免费应用程序,最多只需要用户做出一些小决定(列于表 1 中)。我首先确认,无论是在现场使用实时图像,还是在计算机显示器上显示并通过智能手机拍摄该图像后对其进行测试,这些应用程序的行为都相似。然后,我在 38 张对比鲜明的英国野生和归化植物图像上测试了找到的 10 个免费自动植物识别 (id) 应用程序的性能(包括禾本科、莎草科、草本植物和木本植物,以及花、叶、果实或整株植物的图像),这些图像主要选自我自己的 visual-flora 网站 (visual-flora.org.uk)。样本包括许多常见物种、一些花园逃逸物种和几种不太常见甚至稀有的物种(例如 Cyperus fuscus)。每个应用程序对每张图像测试五次,因为许多应用程序即使使用完全相同的图像,也给出出人意料的差异化识别结果。所有测试均在 2019 年 10 月或 11 月进行,但许多应用程序都在不断改进。图 1 显示了测试的 38 张图像中的一些,其中一些被所有应用程序成功识别,也有一些仅被
微生物是驱动地球生物地球化学循环的齿轮。地球上微生物的代谢能力相当惊人,涵盖了广泛的能量产生途径。这种代谢多样性可能有助于减轻气候变化、污染物和其他环境损害对海洋和陆地生态系统的负面影响,这些损害已列入可持续发展目标 ( SDG )。传统的基于微生物的做法包括生物肥料、植物生长刺激剂和污染物降解剂,已经在使用中。然而,这些只是地球微生物未知的生化潜力的冰山一角。微生物对气候变化反应的生物学机制也在很大程度上是未知的。如果关键的生态系统服务(如养分循环和植物生长支持)无法再维持,微生物功能轨迹的新临界点可能会对环境产生有害影响。为了应对这些挑战,需要进行新的微生物学研究 1 。例如,可以利用微生物来降低大气中的二氧化碳 (CO 2 ) 和甲烷水平。可以利用土壤微生物将碳封存在矿物形式或死细胞生物质 (死物) 中。深根多年生草本植物可以提供将大气中的碳输送到土壤地下深处的载体,在那里碳可以作为根系分泌物被浸出,并作为栖息在根际的土壤微生物的基质。随后,土壤微生物还可以帮助将土壤碳保留在持久性有机物库中 2 。为了实现陆地生态系统的这些目标,需要进行更多的实验性田间操作。在海洋中,CO 2 通量比在陆地系统中更平衡。浮游植物吸收的大气碳大约与陆地上的碳一样多。
含有抗氧化剂的水果和草本植物制成的新鲜饮料能够增强人体的免疫力。然而,这种新鲜饮料产品的保质期通常很短。作为替代方案,必须将产品转化为粉末饮料。因此需要涂层材料来避免在干燥过程中抗氧化剂化合物的损失。本研究旨在仔细研究涂层类型和干燥温度对柠檬草和玛朗苹果粉末饮料质量的影响。该研究采用完全随机设计 (CRD),具有两个因素和两个重复。第一个因素是涂层类型,有 3 个水平(麦芽糊精、糊精、阿拉伯胶),第二个因素是干燥温度,有 3 个水平(40℃、45℃、50℃)。使用方差分析单因素 (ANOVA) 检验和 Duncan 进一步检验(如果处理有显著差异)对数据进行分析。结果表明,涂层类型显著影响稳定性、溶解时间、灰分含量、维生素 C 和抗氧化剂的参数。同时,干燥时间显著影响稳定性、溶解时间、水分含量、灰分、维生素C和抗氧化剂等参数;包衣类型和干燥时间之间存在交互作用,影响松密度、稳定性、溶解时间、灰分、维生素C和抗氧化剂,在干燥温度为45℃时,基于高抗氧化剂含量的糊精包衣类型可获得最佳效果。产品特性包括溶解度为0.96秒,松密度为0.58 g/mL,稳定性为89.19%,水分含量为2.38%,灰分含量为1.21%,维生素C含量为70.22%,抗氧化抑制率为50.97%,IC 50含量为1.29,水分活度为0.50。