钙离子电池 (CIB) 已成为电化学储能的一种有前途的替代品。高性能正极材料的缺乏严重限制了 CIB 的发展。钒氧化物作为 CIB 的正极材料特别有吸引力,预插层化学通常用于提高其储钙性能。然而,钒氧化物在有机电解质中的室温循环寿命仍然低于 1000 次循环。在此,基于预插层化学,通过集成电极和电解质工程进一步提高钒氧化物的循环寿命。利用定制的 Ca 电解质,构建的独立式 (NH 4 ) 2 V 6 O 16 · 1.35H 2 O@氧化石墨烯@碳纳米管 (NHVO-H@GO@CNT) 复合正极实现了 305 mAh g −1 的高容量和 10 000 次循环的创纪录长寿命。此外,首次组装了钙离子混合电容器全电池,容量达到62.8 mAh g − 1 。揭示了基于两相反应的NHVO-H@GO@CNT的钙存储机制以及循环过程中NH 4 +和Ca 2 +的交换。观察到V ─ O层的晶格自调节,通过离子交换形成的具有Ca 2 +柱的层状钒氧化物表现出更高的容量。这项工作通过电极的综合结构设计和电解质改性提供了增强钒氧化物钙存储性能的新策略。
2022 年 6 月 8 日 — 关于通过国防部情报总部公开柜台方式提出的报价请求……割草机替换刀片和其他 4 件物品。P. 规格。请参阅随附的报价单。数量。请参阅随附的报价单。交货日期(履行期限)。
除草剂处理率(g ai ha -1 ) 未处理 --- 吡啶酸 350 甲基磺草酮 53 磺草酮 46 或 92 吡啶酸 + 甲基磺草酮 350 + 53 吡啶酸 + 磺草酮 350 + 46 或 92 *所有处理均含有 1% v/v 的 COC 和 AMS
背景:由于绝大多数先进的mRNA递送系统优先在肝脏中积累,对非肝脏mRNA递送平台的开发需求正在加速增长。方法:在本研究中,我们通过N-季铵化策略制备了阳离子脂质类纳米组装体。研究了它们的物理化学性质、体外mRNA递送效率和小鼠的器官向性。结果:在脂质类纳米组装体上引入季铵基团不仅增强了其体外mRNA递送性能,而且在小鼠静脉注射后完全改变了它们从脾脏到肺部的向性。季铵化脂质类纳米组装体对肺部表现出超高的特异性,主要被肺部免疫细胞吸收,导致超过95%的外源性mRNA在肺部翻译。此类mRNA递送载体即使在环境温度下储存一年以上后仍保持稳定。结论:季铵化为设计新的肺靶向 mRNA 递送系统提供了一种无需掺入靶向配体的替代方法,这应该会扩展 mRNA 对肺部疾病的治疗适用性。
抽象的气候变化和侵入性外星植物物种(IAP)构成了影响土壤健康,生物多样性和可持续性的环境挑战。本综述调查了多年生草作为可持续的环保替代解决方案,用于促进土壤健康和生物多样性,减轻气候变化和打击IAP。对全球草的全球研究和应用进行了广泛的综述,并在本评论论文中强调了多年生草在减少气候变化和IAP影响方面的好处。总体而言,多年生草可以帮助减轻气候变化并打击IAP。它们的密集且广泛的根系,抗旱和水效率使它们有效隔离,储存碳,减轻温室气体排放以及适应气候波动。他们还减少了对耕作和合成肥料的需求,从而增强了对气候变化的生态系统的韧性。这表明将多年生草纳入土地管理可以帮助缓解气候变化和适应,从而导致更具可持续性和弹性的生态系统。此外,管理良好的多年生草可以大大减少IAP由于其抑制能力而受到强大的根系和竞争增长模式增强的影响。此外,由于其恢复和维护本地植物并促进土壤生物多样性,生态系统健康以及恢复后的弹性,多年生草为IAP所面临的挑战提供了可持续和长期的解决方案。因此,将多年生草整合到恢复和管理策略中可以使土地管理者和生态学家有效地打击IAP。总的来说,这篇综述提倡在保护和恢复计划中纳入多年生草。
Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。 框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵框16765-3574 Tehran,I.R。伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。通过将钾变成硫铵的钾产量差异。发现产品的产率和纯度都从磺胺钾开始。关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。该化合物的潜在实际用途是替代高氯酸铵
病原体在世界各地自然和人类主导的生态系统中发挥着重要作用(Lopez-Calderon 等人,2016 年)。从植物和珊瑚到两栖动物和哺乳动物的标志性物种正因病原生物而日益减少(Harvell 等人,2002 年)。由于气候变化、物种分布的变化以及这些因素之间的相互作用,疾病爆发的频率不断增加(Burge 等人,2014 年)。然而,在了解从植物到人类的所有种群中疾病的生态学和影响方面,一个主要的挑战是开发一个强大的系统来量化感染的流行率和严重程度及其影响(Glidden 等人,2022 年)。疫情往往直到疫情已经严重时才被发现,从而妨碍了缓解措施。然而,为发现疫情和传播规模而必须进行的监测强度往往超出了可用资源(Burge 等人,2016 年)。因此,表征空间范围的能力
草甘膦是一种用于破坏通常被称为杂草的除草剂。从1970年代开始,草甘膦的生产和使用在世界范围内稳步增长。到目前为止,尽管涉及风险,但这种除草剂仍在广泛使用(Cuhra等,2013)。草甘膦通过中断对植物功能必不可少的芳族氨基酸的合成而起作用(Lopes等,2018)。最近,人们对草甘膦对生物和环境的影响越来越关注(Johansson等,2018; Seide等,2018)。在这种除草剂的许多影响中是毒性,抗氧化剂活性的变化,内分泌破坏,对脂质的损害,组织学损害等。(Lopes等,2018; Ren等,2018; Lorenz等,2019)。草甘膦可以在土壤,植物和食品中作为污染物。gly在水中具有很高的溶解度,其大量使用会导致表面和地下水污染(Ruiz de Arcaute等,2018)。在各种培养基中检测草甘膦,例如色谱,光度法,
目的本政策概述了草谷关于奴隶制和人口贩运的官方声明。草谷在其全球运营中致力于道德,法律和对社会负责的商业实践。这包括但不限于确保我们的供应链没有奴隶劳动和人口贩运的承诺。根据《 2010年加利福尼亚州供应链法》,2015年《英国现代奴隶制法》和2018年《澳大利亚现代奴隶制法》的这一说法,强调了格拉斯谷为确保我们的供应链免于人口贩运和奴隶劳动的努力。政策草谷对其供应商或任何形式的伴侣之间的人口贩运或奴隶劳动的实例零容忍。此外,为确保我们的供应商满足我们对负责任,道德和法律业务实践的期望,草谷建立了供应商的行为守则。我们的供应商行为守则明确指出:“供应商不得使用强制或非自愿劳动,包括但不限于监狱劳动,契约劳动,奴隶劳动,人口贩运或其他形式的强制性劳动。”尽管供应商的行为准则和当地法律或习俗存在差异,但我们的供应商仍必须遵守《供应商行为准则》。草谷可以根据草谷自由裁量权审核供应商遵守《供应商行为守则》。,如果草谷对供应商对审计请求的回应或提供给草谷的访问以确认符合供应商行为准则的访问不满意,草谷保留降低的权利,从而从该供应商那里进一步购买。如果确定供应商违反了《供应商的行为准则》,草谷明确保留采取其认为适当的行动的权利,包括但不限于终止与违规供应商的关系。
摘要:CSPBBR 3量子点(QD)是光电设备的有希望的候选者。用二烷基铵(例如二二二烷基二甲基溴化物溴化物(DDAB))取代油酸(OA)和油胺(OLA)盖剂,表明外部量子效率(EQE)的含量增加了0.19%(OA/OLA)至13.4%(dd.4%)。设备的性能显着取决于QD固体中光激发载体的分解长度和迁移率。因此,我们通过构造双尺寸的QD混合物来研究DDAB限制的CSPBBR 3 QD固体中的电荷载体传输动力学。可以通过定量改变两个尺寸的QD之间的比率来监测荷兰载波的差异,从而改变了每个QD群集中载体的平均自由路径。从超快瞬态吸收光谱获得的QD固体的激发态动力学表明,由于强量量子的构造,光生的电子和孔很难在小型QD(4 nm)中使用。另一方面,大型QD(10 nm)中的光诱导的电子和孔都将与小型QD插入界面,然后进行重组过程。将载载物的不同研究与混合物中的QD组件上的蒙特卡洛模拟相结合,我们可以在10 nm cspbbr 3 qds中计算出电荷载体的差值长度为〜239±16 nm,以及电子和电子的迁移率,以及2.1(2.1(2.1(0.6))和0.6(0.6)(0.69(±0.6)(0.69)(0.69)(±0.69)(±0.69(±0.6)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±±0.6)(±±0.6)(±±±9)(±±0.6) 分别。这两个参数均表示DDAB限制的QDFIFM中有效的电荷载体传输,这合理化了其LED设备应用程序的完美性能。关键字:超快光谱,扩散长度,cspbbr 3,ddab,量子点光伏,载体传输,电荷转移■简介