使用Qiacuity Digital PCR的绝对定量使用终点PCR的过程,但将PCR反应分为数千个单个分区。分区后,某些分区将不包含目标分子的副本,一些分区将包含一个目标分子的一个副本,而其他分子将包含一个以上的目标分子副本。PCR循环后,通过测量跨反应分区的荧光检测到扩增的靶标。由于模板是随机分布的,因此可以使用泊松统计来计算每个有效的可分析分区的目标分子的平均量。通过将每个分区的平均目标DNA量乘以有效分区的数量,可以计算出井的所有分区目标总数。计算目标浓度是通过指代所有可分析分区中的体积(即填充有反应混合物的分区)确定的。 通过反应混合物本身中存在的荧光染料来识别填充分区的总数。 通过DPCR的绝对定量消除了标准曲线的需求,以确定给定样品中目标RNA或DNA的量。计算目标浓度是通过指代所有可分析分区中的体积(即填充有反应混合物的分区)确定的。通过反应混合物本身中存在的荧光染料来识别填充分区的总数。通过DPCR的绝对定量消除了标准曲线的需求,以确定给定样品中目标RNA或DNA的量。
10.12.1 电泳凝胶和受污染的非尖锐碎片 ...................................................................................................................... 36 10.12.2 受污染的尖锐物品 ...................................................................................................................................... 36 10.12.3 储备溶液 ...................................................................................................................................................... 36 10.12.4 用过的缓冲溶液 ............................................................................................................................................. 37 10.12.5 有机荧光染料的吸附处理 ............................................................................................................................. 37 10.12.6 仅针对溴化乙锭的化学解毒处理 ............................................................................................................. 38 10.13 DEA 管制物质 ............................................................................................................................................. 38
a:细胞培养的明胶纤维底物(用于心肌评估的Genocell®板,日本羊毛Co. A:在细胞培养的明胶纤维底物上培养的IPSC衍生的心肌细胞(Genocell®心肌评估板)明亮的场图像(左),用钙敏感的荧光染料(右)染色。b:钙信号波形因心肌搏动(上图)周期性地流动。以每秒100帧的速度高速成像允许以功率采样频率捕获波形的快速升高部分。以每秒100帧的速度高速成像允许以功率采样频率捕获波形的快速升高部分。
该试剂盒提供了引物/探针混合物,用于使用 qPCR 检测外源核酸模板(cDNA 合成后的 DNA 或 RNA 模板)。引物存在于 PCR 限制浓度,允许与目标序列引物进行多路复用。即使目标基因的拷贝数较低,对照模板的扩增也不会干扰目标基因的检测。有多种染料可供选择,允许使用不同的通道检测控制模板。必须选择与检测目标基因不同的荧光染料。
大小标准由已知长度的荧光标记 DNA 片段组成,可作为分子标尺。大小标准标记的荧光染料与 MLPA 探针产品不同。当片段根据大小迁移时,毛细管电泳仪中的检测器会检测到大小标准和 MLPA 扩增子的荧光 - 小片段比大片段通过得更快。将每个 MLPA 扩增子的迁移与大小标准的每个片段的迁移进行比较,以确定大小,从而确定 MLPA 扩增子的身份。
真核细胞与原核细胞(细菌、古菌)不同,具有高度复杂的内部结构。真核生物具有细胞核,细胞核由核膜包围,含有 DNA、一套复杂的膜细胞器系统:光滑内质网 (SER) 和粗面内质网 (RER)、高尔基体、内体和溶酶体(它们共同构成细胞的分泌途径)、以及线粒体、质体(植物细胞)和过氧化物酶体。由于细胞内生物膜系统的存在,决定了细胞内存在单独的区室(所谓的区室化),真核细胞能够同时且彼此靠近地进行大量不同的(通常是相反的)生化过程。传统光学显微镜的分辨率较低(0.2 μm),限制了对细胞内结构进行精确观察的可能性,因此电子显微镜常用于此类研究,其分辨率为 0.2 nm,为了解细胞器的超微结构提供了更大的可能性。这种复杂技术的替代方法是基于特定抗原抗体反应的免疫细胞化学反应,其特点是灵敏度高,能够检测到低于传统光学显微镜分辨率的信号。使用与抗体结合的各种荧光染料使得可以在这种类型的研究中使用荧光显微镜,但是这种分析通常是在固定被检查的细胞及其相当复杂的处理之后才有可能的。近年来,人们获得了许多荧光染料,它们一方面可以特异性地与某些细胞器的膜结合,从而可以确定它们在细胞中的可能位置,另一方面适合于“活体”染色。这些包括与高尔基体 (BodipyCeramide) 膜、线粒体 (Miyo-Tracker、Rhodamine 123)、光滑内质网 (ER-Tracker) 和溶酶体 (Lyso-Tracker) 膜结合的染料。
分离染色体的流式细胞术是细胞遗传学的一种新方法,可快速测量单个中期染色体。在这种方法中,用适当的荧光染料染色的水悬浮液中的染色体被限制在激发染料的窄激光束中高速流动。发射的荧光通过光度法测量,累积的数据形成染色体荧光的频率分布。该频率分布的峰值归因于单个染色体或具有相似荧光的染色体组;峰值平均值与染色体荧光成正比,峰值面积与染色体出现频率成正比。因此,频率分布可作为核型(1、2)。此外,流式分选可根据染色体的染色特性分离染色体(3、4),这与传统的中期染色体纯化方法不同,后者依赖于速度或等密度沉降、区域离心或选择性过滤(5)。纯化单个中期染色体很重要,原因如下。富集或纯染色体部分已进行生化分析,以提供有关 DNA 或蛋白质结构的信息(6),将遗传信息转移到整个细胞(7-9),或通过体外杂交绘制基因图谱(10)。但一般来说,传统技术无法提供足够纯度的染色体,无法进行高分辨率生物或生化研究。通过基于溴化乙锭荧光的流式分选,我们以 90% 的纯度将雄性鹿 Muntiocus muntjak (2n = 7) (4) 的每个染色体和中国仓鼠 M3-1 细胞系的 14 种染色体类型分离成 8 个染色体组 (1, 3)。在我们之前对溴化乙锭染色的人类染色体的研究中,我们仅从雄性 (2n = 46) 的 24 种染色体类型中分辨出 8 个染色体组 (2, 3)。在本研究中,使用 DNA 荧光染料 33258 Hoechst 和改进的仪器,
荧光原位杂交 (FISH) — 这种实验室技术用于评估染色体上的基因和/或 DNA 序列。使用血液或骨髓测试去除细胞和组织。在实验室中,将荧光染料添加到 DNA 片段中;将修饰后的 DNA 添加到载玻片上的细胞或组织中。当这些 DNA 片段与载玻片上的特定基因或染色体区域结合时,在具有特殊光线的显微镜下观察时,它们会“发光”。通过这种方式,可以识别出染色体中数量增加或减少或重新排列的部分。FISH 有助于诊断、评估风险和治疗需求,以及监测治疗效果。
具有从荧光到发光的宽灵敏度范围的高灵敏度/高速相机。作为荧光/发光板成像仪,可高通量地执行各种测定。由于微孔板的所有孔都是同时读取的,因此在添加底物后,荧光指示剂或孔间测量没有时间滞后。要测量快速荧光动力学,可以使用高速数据捕获功能(可选)以最多 5 毫秒的间隔捕获数据。当需要在短时间内采样时,例如使用高速电压敏感荧光染料和评估 iPS 细胞衍生的心肌细胞时,它是有效的。对于荧光和发光的测量,通过 FRET 和 BRET 等能量转移进行双波长测量是离子通道和蛋白质动力学分析的有效方法。通过安装在传感器前面的荧光滤光片转换器,可以高通量地进行双波长测量。
功能;它自然发生在许多小的有机分子中。可以在补品水中找到一个经典的例子。滋补水含有分子奎宁,当暴露于紫外线时,它会发光明亮的青色(蓝色绿色)。分子不会自行发光,并非每个分子都会产生光泽。首先,要产生光,分子必须吸收 - 摄入 - 能源。通常,荧光染料吸收电磁频谱上较高能量的光,例如无形的紫外线。随着原子摇动或振动,激发电源吸收的某些能量会损失,然后当电子返回基态时,发出了较低能量的光,例如可见光,会散发出来。化学家会说,当他们吸收紫外线时,分子从基态上“兴奋”,然后“放松”并落回基态发光或产生可见光。具有正确的结构对于光的发射至关重要。分子激发后,它们可以通过