工程和电子系,阿布贝克尔贝尔卡德大学技术学院,阿尔及利亚特莱姆森 doi:10.15199/48.2024.10.23 基于 AlGaN/GaN/AlGaN 的 UV LED 单量子阱数值模拟 摘要。发光二极管 (LED) 等光源是制造更坚固、转换效率更高、更环保的灯具的良好解决方案。这项工作的目的是使用 SILVACO 软件研究和模拟夹在两层之间(分别为 p 掺杂和 n 掺杂的 AlGaN)的单个 GaN 量子阱的紫外发光二极管。通过这种模拟,我们可以提取 LED 的不同特性,例如电流-电压 (IV) 特性、发射光功率、自发辐射率、辐射复合、俄歇复合、肖克利-里德-霍尔复合、光增益、光通量、光谱功率密度、整体效率。这些模拟使我们能够提取基于 p-AlGaN/GaN/n-AlGaN 的单量子阱紫外发光二极管的电学和光学特性,并检查其性能。光学器件、发光二极管 (LED)、双色灯和发光二极管przyjaznych dla środowiska。 Celem tej pracy 开玩笑 zbadanie i symulacja diody elektroluminescencyjnej ultrafioletowej z pojedynczą Studnią kwantową GaN umieszczoną pomiędzy dwiema warstwami; odpowiednio p 掺杂 in n 掺杂 AlGaN, przy użyciu oprogramowania SILVACO。此 symulacja pozwoliła nam wyodrębnić różne charakterystyki diody LED、takie jak charakterystyka prądowo-napięciowa (IV)、moc emitowanego światła、szybkość emisji spontanicznej、rekombinacja radiacyjna、重新组合 Augera、重新组合 Shockleya-Reada-Halla、wzmocnienie optyczne、strumień świetlny、gęstość widmowa mocy、ogólna wydajność。该符号与 p-AlGaN/GaN/n-AlGaN 和 p-AlGaN/GaN/n-AlGaN 的其他器件有关。 ( Numeryczna symulacja pojedynczej Studni kwantowej diody UV LED na bazie AlGaN/GaN/AlGaN) 关键词:GaN、AlGaN、紫外发光二极管、silvaco Tcad。 Słowa kluczowe:GaN、AlGaN、二极管发射器、UV、silvaco Tcad。简介 基于氮化镓 (GaN) 的固态照明技术彻底改变了半导体行业。 GaN 技术在减少世界能源需求和减少碳足迹方面发挥了至关重要的作用。根据报告,2018 年全球照明需求减少了约 13% 的总能源消耗。美国能源部估计,到 2025 年,明亮的白色 LED 光源可以减少 29% 的照明能耗。近十年来,全球的研究人员致力于 III-N 材料研究,以改进现有技术并突破 III-V 领域的极限。现在,随着最近的发展,GaN 不仅限于照明,最新创新还推动了微型 LED、激光投影和点光源的发展。这些发展将 GaN 推向了显示技术领域。基于 GaN 的微型 LED 的小型化和硅上 GaN 的集成推动了其在快速响应光子集成电路 (IC) 中的应用。将详细讨论 GaN LED 领域的大多数最新进展 [1] III 族氮化物 (GaN、AlN 和 InN) 及其合金因其优异的物理性能和在恶劣环境条件下的稳定性而被认为是各种光电应用中最有前途的半导体材料 [2, 3, 4]。如今,基于 III 族氮化物的发光二极管 (LED) 因其效率高、功耗低、寿命比荧光灯和白炽灯长而被广泛应用于世界各地的固态照明 (SSL) 应用 [5, 6]。LED 是一种更有前途的低功耗光源,可取代传统的荧光灯。除 LED 外,基于 III 族氮化物的激光二极管 (LD)、高功率电子器件、光电探测器等也是其他扩展的光电应用,这些应用也已得到展示 [7, 8]。这项工作包括对基于氮化镓 GaN 的单量子阱紫外 LED 的研究和模拟,在本文中,我们展示了所研究 LED 的模拟结果以及它们的电气和光学特性。还有其他扩展的光电应用也得到了展示 [7, 8]。这项工作包括基于氮化镓 GaN 的单量子阱紫外 LED 的研究和模拟,在本文中,我们展示了所研究 LED 的模拟结果,并展示了它们的电气和光学特性。还有其他扩展的光电应用也得到了展示 [7, 8]。这项工作包括基于氮化镓 GaN 的单量子阱紫外 LED 的研究和模拟,在本文中,我们展示了所研究 LED 的模拟结果,并展示了它们的电气和光学特性。
四十多年来,随着功率金属氧化物硅场效应晶体管 (MOSFET) 结构、技术和电路拓扑的创新与日常生活中对电力日益增长的需求保持同步,电源管理效率和成本稳步提高。然而,在新千年,随着硅功率 MOSFET 渐近其理论界限,改进速度已经放缓。功率 MOSFET 于 1976 年首次出现,作为双极晶体管的替代品。这些多数载流子器件比少数载流子器件速度更快、更坚固,电流增益更高(有关基本半导体物理的讨论,一个很好的参考资料是 [1])。因此,开关电源转换成为商业现实。功率 MOSFET 最早的大批量消费者是早期台式计算机的 AC-DC 开关电源,其次是变速电机驱动器、荧光灯、DC-DC 转换器以及我们日常生活中成千上万的其他应用。最早的功率 MOSFET 之一是国际整流器公司于 1978 年 11 月推出的 IRF100。它拥有 100V 漏源击穿电压和 0.1 Ω 导通电阻 (R DS(on)),堪称当时的标杆。由于芯片尺寸超过 40mm2,标价为 34 美元,这款产品注定不会立即取代备受推崇的双极晶体管。从那时起,几家制造商开发了许多代功率 MOSFET。40 多年来,每年都会设定基准,随后不断超越。截至撰写本文时,100V 基准可以说是由英飞凌的 BSZ096N10LS5 保持的。与 IRF100 MOSFET 的电阻率品质因数 (4 Ω mm 2 ) 相比,BSZ096N10LS5 的品质因数为 0.060 Ω mm 2 。这几乎达到了硅器件的理论极限 [2]。功率 MOSFET 仍有待改进。例如,超结器件和 IGBT 已实现超越简单垂直多数载流子 MOSFET 理论极限的电导率改进。这些创新可能还会持续相当长一段时间,并且肯定能够利用功率 MOSFET 的低成本结构和一批受过良好教育的设计人员的专业知识,这些设计人员经过多年学习,已经学会了从功率转换电路和系统中榨干每一点性能。
荧光检测核轨迹是一种辐射测量方法,最初是由Akselrod和使用Al 2 O 3:C,Mg单晶的同事开发的(Akselrod等,2006a; Akselrod等,2006b),并成功地引入了应用程序的各个领域(Al.akselenber and kousselrodg,akselrodg and akselrodg and.220; akselrod等人,2006b)。 2018年; Akselrod和Sykora,2013年;在过去的几年中,发现另一种材料适合用作荧光核轨道检测器(FNTD):未含量的氟氟化锂晶体(Bilski和Marczewska,2017; Bilski等,2019b)。LIF中粒子轨迹的荧光成像的物理机制是基于创建的,这是通过电离颗粒F 2颜色中心在晶体晶格中的产生。这些中心用蓝光(在445 nm左右的波长)激发时,在红色光谱范围内发出光致发光(在670 nm处达到峰值)。使用荧光显微镜,使用高放大倍数和灵敏的数码相机,可以以低于1微米的分辨率对辐射轨道进行成像。轨道强度是从轨道发出的荧光灯的强度,取决于电离密度,即,即局部沉积的能量的量。lif晶体已成功地用于图像各种离子的轨道,从氦与铁不等(Bilski等,2019a)。对于质子,对于高能梁,像放射疗法中使用的光束一样,由于这些颗粒的电离密度较低,很难观察到原代质子的单个轨道。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。 这些斑点的数量比撞击晶体上的质子数量低的数量级。 它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。 因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。 另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。 因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。 该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。这些斑点的数量比撞击晶体上的质子数量低的数量级。它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。
330-092-0015 Effective Dates for Regulated Equipment ¶ The following list specifies the effective dates for equipment standards, test procedures, listing, and labeling requirements which have been adopted in these rules.¶ (1) Bottle-type water dispensers, as defined in OAR 330-092-0010(1): The standards in OAR 330-092-0020(1) are effective for bottle-type water在2022年1月1日或之后制造的分配器。(2)商业热食品持有柜,如ORS 469.229(13)所定义的:ORS 469.233(2)的标准是2009年9月1日生效的,在俄勒冈州销售,2010年9月1日,安装。 469.233(3)是2009年9月1日生效的,用于安装俄勒冈州的设备。在OAR 330-092-0010(14)中定义:OAR 330-092-0020(5)中的标准对于在2022年1月1日或之后制造的便携式电动水疗中心有效。 (7)ORS 469.229(6)中定义的电池充电器系统:ORS 469.233(7)的标准有效:¶(a)2014年1月1日或之后制造的大电池充电器系统。在2018年6月13日或之后生产的联邦监管的大型电池充电器系统被预先获得进一步的州法规。¶(b)零售业出售的小型电池充电器系统不是USB充电器系统,不是电池容量为20瓦小时或更长时间,并且在2014年1月1日或在2014年1月1日之后制造。在2018年6月13日或之后生产的联邦监管的小型电池充电器系统被抢占进一步的州法规。¶(c)零售业出售的小型电池充电器系统是USB充电器系统,其电池容量为20瓦小时或更长时间,并且在2014年1月1日或之后。在2018年6月13日或之后生产的联邦监管的小型电池充电器系统被抢占了进一步的州法规。¶(d)在2017年1月1日或之后生产的零售业未出售的小型电池充电器系统。在2018年6月13日或之后制造的联邦调节的小电池充电器系统是从进一步的州法规中供不应求的。Federally regulated inductive charger systems that are manufactured on or after June 13, 2018 are pre-empted from further state regulation.¶ (f) Battery backups and uninterruptible power supplies, manufactured on or after January 1, 2014, for small battery charger systems for sale at retail, which may not consume more than 0.8+ (0.0021xEb) watts in battery maintenance mode, where (Eb) is the battery capacity in瓦特小时。Federally regulated uninterruptible power supplies that are manufactured on or after June 13, 2018 are pre-empted from further state regulation.¶ (g) Battery backups and uninterruptible power supplies, manufactured on or after January 1, 2017, for small battery charger systems not sold at retail, which may not consume more than 0.8+ (0.0021xEb) watts in battery maintenance mode, where (Eb) is the battery capacity in瓦特小时。在2018年6月13日或之后制造的联邦监管的不间断电源被预先获得进一步的州法规。¶(8)高光输出双端双层石英卤素灯,如ORS 469.229(27)所定义的,ORS 469.233(8)(8)(8)的标准为2016年1月1日,设备均为1月1日的empplion。 OAR 330-092-0020(9)中的标准对高CRI荧光灯有效,该灯在2023年1月1日或之后制造。