荧光照明是人们感兴趣和关注的根源(“办公室照明”,1980; Veitch等,1993)。关注包括对健康,情绪和行为的影响,从视觉不适到严重的问题,例如皮肤癌(Lindner&Kropf,1993; Stone,1992; Veitch等,1993; Veitch&Gifford,1996)。荧光灯的一个特征一直被归咎于这些抱怨的原因是光谱发电(SPD),这是各种波长在光的整体颜色外观上的相对贡献(Rea,1993)。自然日光具有广泛,相对平坦的SPD,并且被许多人认为最适合健康和福祉(Veitch等,1993; Veitch&Gifford,1996)。全光谱荧光灯(FSFL)被认为模仿了日光的光谱质量。许多人认为FSFL与自然日光相似。最初对FSFL的兴趣始于对植物的简单观察(Ott,1973)和动物园动物(Blatchford,1978; Laszlo,1969),这些观察似乎在FSFL下壮成长。对感知和行为效应的研究包括对学童的可见性,多功能和学业表现的研究,以及办公室工作人员的疲劳。FSFL对健康和福祉的益处是有争议的。有人认为,缺乏可靠的科学证据来支持灯标签中的健康主张(食品和药物管理局,1986年)。媒体注意尽管如此,很大一部分的公众接受了这些主张,他们认为模仿日光对健康的光线更适合健康(Veitch等,1993)。
元素I+ CCRP测试使用竞争性免疫测定来生成定量的CCRP浓度输出。当将样品添加到墨盒入口端口中时,将其与干燥的荧光团标记的CCRP混合。然后,混合物与固定在墨盒传感器表面上的抗CRP反应。CCRP与荧光团标记的CCRP竞争与抗CRP抗体结合。荧光照明是通过二极管激光亮到专有的平面波导墨盒镜头的二极管激光。荧光成像用于信号转导。产生的荧光与样品的CCRP浓度成反比。荧光强度使用墨盒特异性校准信息转换为定量CCRP浓度。
元素I+皮质醇测试使用竞争性免疫测定来产生定量的皮质醇浓度输出。将样品添加到墨盒入口端口时,将其与干燥的荧光团标记的抗皮质醇抗体混合。混合物随后与固定在墨盒传感器表面上的皮质醇反应。皮质醇与荧光团标记的抗皮质醇抗体竞争,以与表面上的皮质醇结合。荧光照明是通过二极管激光亮到专有的平面波导墨盒镜头的二极管激光。荧光成像用于信号转导。产生的荧光与样品的皮质醇浓度成反比。荧光强度使用墨盒特异性校准信息将荧光强度转化为定量皮质醇浓度。
在卫生领域的用途和应用,用于实现体检,牙科,临床检查,诊断和治疗程序的手套,用于实验室用途,以及通常需要在研究和兽医医学领域的所有活动的所有活动,这些活动都需要对感染性身体进行保护的手套。仅适用于低风险暴露水平。其对化学风险的保护很低。它符合验证微生物安全性和低化学风险的要求(EN374)。它们也用于食品,电子和清洁行业,因为NBR不含乳胶或化学加速器,因此由于过敏原因引起的皮肤刺激性问题会减少,而其他人则提供可接受的舒适性和弹性。在食物领域,这些手套符合条例10/2011关于旨在与食物接触的塑料材料的要求。存储条件保持在凉爽干燥的地方。避免过量热量,并防止直射阳光或荧光照明。
发光二极管(LED)照明现在是新的和改造的室内照明系统中最常见的技术。灯是通常可更换并产生光的设备。示例包括白炽灯泡,紧凑的荧光灯,T8和T5线性荧光灯和LED灯泡。“照明器”是指具有用于灯连接的一个或多个插座的完整照明单元。照明包括所有组件,例如灯,电源,反射器,镜头,镇流器和扩散器。目前,商业建筑中的大多数照明都是线性荧光和荧光型Troffer风格的灯具的形式。有直接一对一的LED线性灯更换和LED漫游器。LED高海湾,补充,任务和壁清洗系统可用于替代这些应用中常见的卤素和荧光照明。替代点可能包括简单的灯具更换或完整的灯具更换,并重新布线以改善空间照明。此措施不能区分灯和置换灯。此外,此措施对建筑物中的照明控件没有任何更改。
摘要。Chlorella sorokiniana 的代谢会受到各种培养条件的影响。如果使用定量紫外线照射,则有可能补偿性地增加类胡萝卜素的合成,从而防止氧化应激。菌株 211-8k 在各种光照条件下培养:对照样品接受荧光照射;样品 1 每天接受 15 分钟的定量定期紫外线照射和荧光照明;样品 2 在稳定阶段接受 30 分钟的紫外线照射。定期紫外线照射对 C. sorokiniana 的种群增长产生负面影响,这种影响仅在第九天才可检测到,并且生物量产量显著下降。单次 30 分钟的紫外线照射会导致风干生物量的产量略有下降,但随着种群的进一步增长可能会得到补偿。定期接受紫外线照射可刺激类胡萝卜素的合成,干生物量的产量平均比对照样品高出 30%。在稳定阶段,单次紫外线照射 30 分钟会导致叶绿素和类胡萝卜素的生物量含量下降。微藻的显微镜检查显示,紫外线照射会导致出现凋亡迹象的细胞形成。
开放式办公室的节能照明控制系统:实地研究 Anca D. Galasiu、Guy R. Newsham、Cristian Suvagau、Daniel M. Sander Anca D. Galasiu(通讯作者) 电话:+1 (613) 993-9670 电子邮件:anca.galasiu@nrc-cnrc.gc.ca 加拿大国家研究委员会建筑研究所室内环境项目大楼 M-24,1200 Montreal Road 渥太华,安大略省,加拿大,K1A 0R6 Guy R. Newsham 加拿大国家研究委员会建筑研究所室内环境项目大楼 M-24,1200 Montreal Road 渥太华,安大略省,加拿大,K1A 0R6 Cristian Suvagau BC Hydro Technology Solutions Power Smart 900-4555 Kingsway 伯纳比,BC,加拿大 V5H 4T8 Daniel M. Sander 国家研究委员会建筑研究所室内环境项目大楼 M-24,1200 Montreal Road 渥太华,安大略省,加拿大,K1A 0R6加拿大委员会(已退休)摘要 - 我们在一栋深层办公楼进行了实地研究,该办公楼配备了位于隔间工作站中央的悬挂式直接间接照明器。为了减少照明能源的使用,照明器采用了集成占用传感器和光传感器(日光采集),以及通过占用者的计算机屏幕访问的单独调光控制。一年内从 86 个工作站收集了数据,以检查这些控件带来的能源节约和电力减少,以及控件的使用方式。还开展了一项宣传活动,使用电子邮件提醒来鼓励居住者使用照明系统的单独控制功能。结果表明,与安装在相邻楼层的传统荧光照明系统相比,该照明系统可大幅节省能源并降低峰值功率。安装的照明功率比传统系统低 42%。与工作时间内全功率使用的相同灯光相比,这三个控件合计可节省 42% 至 47% 的照明能源使用;这