Tedlar ® 薄膜厚度各异,可贴合在金属等多种材料上。与油漆涂层等薄膜材料相比,Tedlar ® 由 100% 荧光素 PVF 制成,具有独特的性能,包括优异的耐候性、延展性、耐久性、物理稳定性以及对多种化学品、溶剂、污染物和腐蚀剂的抵抗力。此外,Tedlar ® 薄膜不含丙烯酸等增塑剂,具有出色的耐老化性,在很宽的温度范围内保持韧性和柔韧性。其致密的薄膜表面易于清洁、不反应且惰性,耐污、防火,不易褪色、粉化和开裂,安全环保,是各种行业和应用的理想选择。
可以使用不同颜色的荧光蛋白同时对基因进行成像(Miyawaki,2011;Han et al.,2019)。由于分子成像探针的发展取得了最新进展,可以获得不同细胞和组织状态下的细胞基因表达模式信息(Sakaue-Sawano et al.,2008;Kohl et al.,2014;Lin and Schnitzer,2016;Sakaguchi et al.,2018)。除了荧光蛋白成像外,生物发光成像也有助于定量分析基因表达动态(Shimojo 等,2008;Imayoshi 等,2013;Imayoshi and Kageyama,2014;Isomura 等,2017;Suzuki and Nagai,2017;Sueda 等,2019)。尽管生物发光探针的多色成像最初在技术上受到限制,但最近开发的短波长和长波长荧光素酶
核酸检测在各种诊断和疾病控制中起着关键作用。目前可用的核酸检测技术面临着速度、简便性、精度和成本之间的权衡挑战。在这里,我们描述了一种用于快速核酸检测的新方法,称为 SENSOR(硫 DNA 介导的核酸传感平台)。SENSOR 由硫代磷酸酯 (PT)-DNA 和硫结合域 (SBD) 开发而成,可特异性结合双链 PT 修饰 DNA。SENSOR 利用 PT-DNA 寡核苷酸和 SBD 作为靶向模块,与分裂荧光素酶报告基因连接,在 10 分钟内产生发光信号。我们对合成核酸和 COVID-19 假病毒进行了检测测试,结合扩增程序实现了阿摩尔灵敏度。单核苷酸多态性 (SNP) 也可以区分。表明 SENSOR 是一种有前途的新型核酸检测技术。
疾病的外科治疗是医疗保健不可或缺的一部分。实现外科目标可以在保留形态和生理功能的同时实现最佳的疾病治疗,这主要取决于可视化 [1]。最近,外科医生已开始使用荧光进行手术导航,以提高术中识别率并引导病变切除 [2,3]。荧光成像首次应用于外科手术是在 1948 年,当时使用静脉注射荧光素在神经外科手术期间可视化颅内肿瘤4。X 射线、计算机断层扫描 (CT)、超声波 (US) 和磁共振成像 (MRI) 等成像技术主要用于手术计划或中期评估,因为它们不提供实时术中引导 [3]。荧光引导成像提供更深层的解剖信息和实时术中反馈,以帮助切除病变组织。
位于猪染色体17上的五个单核苷酸多态性(SNP)与约克郡猪的LMD显着相关。通过整合链接差异和链接分析(LDLA)和高通量染色体构象捕获(HI-C)分析,将10 KB的定量性状基因座(QTL)鉴定为候选功能基因组区域。基于GWAS,HI-C荟萃分析和顺式调节元件数据的综合结果,BMP2基因被鉴定为LMD的候选基因。通过目标区域测序进一步验证了已鉴定的QTL区域。进一步,通过使用双 - 荧光素酶测定和电泳迁移率分析(EMSA),两个SNP,包括位于增强剂区域的SNP RS3218466600,以及位于启动子区域中的SNP RS1111440035,将其确定为候选者的SNP,是与LMD功能相关的候选SNP。
膀胱癌(BCA)是影响男性的最常见的恶性肿瘤之一。致癌转录因子在人类癌症进展中起重要调节剂。在我们的研究中,我们旨在构建人工循环的非编码RNA(aciRCRNA),这些功能单元由三个功能单元组成,这些功能单位模仿CRISPR-CAS系统并阐明其在膀胱癌中的治疗作用。此外,还进行了调节aciRCRNA和CRISPR-DCAS系统之间基因表达的效率的比较。我们连接了TFS适体的cDNA序列,并构建了一个circrna。为了证明平台的实用性,选择了β -catenin和nf -κB作为功能靶标,而T24和5637细胞系作为测试模型。实时定量PCR(QPCR),双荧光素酶测定和相关表型测定法被用于检测相关基因的表达和治疗效果。为了阐明ACIRCRNAS的功能,采用了能够检测β-蛋白酶和NF-κB表达的荧光素酶载体来评估aciRCRNA对β-Catenin和NF-κB的抑制作用。因此,确定了涉及acircrna-3的最佳组合。接下来,使用QPCR分析来评估aciRCRNA处理后靶标基因的相对表达水平。使用C-Myc和Cyclin D1的表达来确定β-蛋白酶的功能,而BCl-XL和TRAF1用于确定NF-κB的功能。ACIRCRNA抑制了BCA细胞中的β -catenin和NF -κB相关的信号传导。CD63-Hur融合蛋白用于将aciRCRNA加载到外泌体中。结果表明,aciRCRNA可以抑制目标转录因子的活性,并且抑制作用优于cripsr-dcas9-krab。此外,功能实验表明,膀胱细胞中阿西尔纳的转染导致增殖减少,凋亡增强和抑制迁移。总而言之,与CRISPR-DCAS9-KRAB系统相比,我们的合成基因装置表现出抗肿瘤调节能力,并显示出更高的肿瘤抑制效率。因此,我们的设备为癌症治疗提供了一种新的策略,可能是癌细胞的有用策略。
lunula是一种单细胞生物化的恐龙。尽管在许多双重化的进化枝中都可以理解生物新蛋白质和荧光素酶合成的机理和基因,但在恐龙粉中,它仍然未知。我们利用了长时间和简短的读数,在这里介绍了P. Lunula转录组的从头大会。总共获得了9.75亿个过滤的配对读数,并将其组装成155,716个重叠群,该重叠群与功能上有功能上注释的普通成绩单相对应。该数据集对于提高我们对原生物学的理解并可以通过NCBI Bioproject(PRJNA727555)获得有价值。©2021作者。由Elsevier Inc.出版这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
转染的 Bge 细胞以评估 Cas9 的表达(图 1b)。使用两对引物进行 PCR,以对照或 pCas-BgAIFx4 转染的 Bge 细胞的 cDNA 作为模板,一对引物针对 Cas9,另一对针对 BgActin,后者是 B. glabrata 的肌动蛋白基因,用作参考基因(图 1b、c)。转染后 24 小时检测到瞬时 pCas-BgAIFx4 转染的 Bge 细胞中编码 Cas9 的转录本,并在测定的 9 天内保持表达。在 pCas-BgAIFx4 转染的细胞中观察到 Cas9 mRNA(277 bp)的特异性扩增子,但在未转染的细胞中没有观察到(图 1c)。我们的研究结果支持了先前的研究结果,即揭示了 Bge 细胞中由荧光素酶驱动的 CMV 启动子 [60]。对照参考 BgActin 的表达在 214
同基因免疫功能小鼠卵巢癌模型 由于缺乏合适的免疫功能同基因小鼠模型来重现人类卵巢癌的基因变化,卵巢癌的研究受到了限制。Orsulic 实验室已设计出多种小鼠卵巢癌细胞系,这些细胞系具有明确的基因改变,这些改变经常出现在人类高级别浆液性卵巢癌中。一个例子是 FVB 同基因小鼠卵巢癌细胞系 BR5-Luc,其具有 p53、Brca1、myc 和 Akt 基因改变的组合。该模型中的肿瘤浸润有宿主基质细胞,而荧光素酶和 HA 标签可通过整体动物成像和免疫组织化学方便地可视化和量化癌细胞。该模型的几个特点使其适合研究卵巢癌进展过程中的微环境动态,例如:
信号转导和细胞内信号转导简介 298 研究蛋白质的基本工具 300 抗体的制备和使用 300 纯化蛋白质 302 免疫沉淀 (IP) 304 研究蛋白质表达 30 蛋白质印迹 (WB) 306 酶联免疫吸附试验 (ELISA) 308 放射免疫测定 (RIA) 310 免疫组织化学 (IHC) 312 免疫电子显微镜 (IEM) 312 报告蛋白 312 研究蛋白质 - 蛋白质相互作用 313 免疫共沉淀 (Co-IP) 313 蛋白质亲和层析 313 酵母双杂交试验 314 研究翻译后修饰 317 PTM 特异性试验 317 PTM 特异性抗体 320 研究蛋白质-DNA 相互作用 321 电泳迁移率分析 (EMSA) 323 染色质免疫沉淀 (ChIP) 325 荧光素酶分析 327 结论 328 推荐阅读和参考文献 328