基础编辑者是一类有希望的下一代基因组编辑技术,具有精确纠正引起疾病的遗传变异的潜力,并同时安全地敲除多个基因靶标。在一种配置中,PIN点碱基编辑平台是DNA结合Cas的模块化组件和DNA修饰的脱氨酶成分,通过在序列靶向指导指南RNA(GRNA)中编码的适体相关的Deaminase组件。通常,基本编辑器在应用中的应用中,可以准确地预测CAS和脱氨酶组合的目标序列的编辑效率和特异性。PIN点底座编辑系统的模块化允许创建大量配置,它们的PAM特异性,序列编辑偏好和编辑效率可能会有所不同。为了促进和加速基于PIN点平台的应用程序的开发,我们创建了一种定制工具来设计GRNA,以针对感兴趣的基因并安装基本转换,包括那些将引入早产停止密码子或破坏剪接站点以敲除目标基因的基础转换。此外,我们进行了一个大规模的平行细胞屏幕,以分析两个不同的针对点基本编辑器配置的编辑活性,其GRNA针对数千个目标序列。我们使用从屏幕获得的数据来构造每种配置的观察到的编辑结果模型。我们将这些模型应用于旨在产生多个临床上相关基因靶标的功能敲除(包括CIITA和PCSK9)的功能敲除。分析了IN硅预测与GRNA基于细胞的性能的相关性后,我们确认该模型预测与Pin-Point Base编辑平台观察到的编辑效率相关。自定义GRNA设计工具和预测模型的组合导致了一种新型,高效的GRNA来识别能够通过破坏剪接站点来敲除PCSK9的识别,我们证实了文献中先前报道的其他GRNA设计的预测性能。使用我们基于细胞的广泛性能数据集告知我们的GRNA设计规则,创建可靠的自定义工具来优先考虑GRNA并选择具有高编辑效率的人。
免疫检查点抑制剂已成功治疗肺,肝,乳腺癌,肾脏和皮肤癌。然而,不同癌症类型之间免疫模型和可变药物反应的复杂性在免疫肿瘤学中构成了重大挑战。为了促进大规模的药物发现,ATCC创建了具有高内源性表达的肿瘤和免疫细胞系的检查点抑制性疗程和共刺激性表达水平。这些细胞系包含伽马干扰素激活位点(气)回应元件,活化T细胞的核因子(NFAT) - 回答元件或活化B细胞的核因子Kappa-Light-chain-Enhancer(NFKB,) - 可用于跟踪候选候选者的Luciferase Gene上游的响应元件。投资组合包括临床相关
储存和稳定性: 尿嘧啶 DNA 糖基酶采用干冰或蓝冰运输。到货后储存于 -20°C 下,以获得最佳稳定性。 有效期: 在外包装盒标签上的有效期内,在推荐条件下储存并正确处理时,试剂盒可保持完整活性。 单位定义: 一个单位是指每分钟催化含尿嘧啶双链 DNA 释放 60 pmol 尿嘧啶的酶量。通过 37°C 下 30 分钟内在含有 0.2 mg DNA ( 10 4 -10 5 cpm/mg )的 50 mL 反应预混液中释放 [ 3 H]- 脲嘧啶来测量活性。 安全预防措施: 处理试剂前请阅读并理解 SDS (安全数据表)。首次发货时提供 SDS 的纸质版文件,此后可应要求提 供。 质量控制: Meridian 遵守 ISO 13485 质量管理体系运行。尿嘧啶 DNA 糖基酶在放行前经过广泛的活性测试。
Anzalone, AV、Koblan, LW 和 Liu, DR (2020)。使用 CRISPR–Cas 核酸酶、碱基编辑器、转座酶和主要编辑器进行基因组编辑。《自然生物技术》,1-21。
摘要:荧光素酶 (luc) 生物发光 (BL) 是最常用的发光蛋白,已被设计为在多种癌细胞系中表达,由于它可以穿透大多数组织,因此可用于体内检测肿瘤结节。本研究的目的是开发一种可以表达荧光素酶的抗溶瘤腺病毒 (OAd) 的人类三阴性乳腺癌 (TNBC)。因此,当将 OAd 与化疗或靶向疗法相结合时,我们将能够实时监测这些化合物使用 BL 增强 OAd 抗肿瘤功效的能力。TNBC 细胞系 HCC1937 稳定转染质粒 pGL4.50[luc2/CMV/Hygro] (HCC1937/luc2)。建立后,将 HCC1937/luc2 原位植入 NSG(非肥胖糖尿病严重联合免疫缺陷病 γ)雌性小鼠的第 4 个乳腺脂肪垫中。生物发光成像 (BLI) 显示,HCC1937/luc2 细胞系随着时间的推移发展出原位乳腺肿瘤和肺转移。然而,luc 质粒的整合改变了 HCC1937 表型,使 HCC1937/luc2 对 OAdmCherry 的敏感性高于亲本细胞系,并减弱了干扰素 (IFN) 抗病毒反应。对另外两种 luc 细胞系的测试表明,这并不是普遍的反应;然而,需要评估适当的对照,因为荧光素酶的整合可能会影响细胞对不同治疗的反应。
黄烷染料(包括荧光素)是一类众所周知的荧光染料,在天然科学中具有广泛的应用。荧光素衍生物是广泛用于检测和光学成像的重要荧光探针。荧光素衍生物通常是通过引入醛类基团或荧光素黄油环和苯基部分的酯化反应来制备的。当今的研究集中在将氨基组与荧光素单醛连接起来,因为这些衍生物显示出较高的活性,并且可以与分析物复合以增加或降低荧光强度。因此,本综述旨在总结不同的合成方法,光学特性,可能的机制和荧光素探针的应用。本文提供了筛查具有高灵敏度和有效生物学检测的荧光素探针的参考。它进一步增强了其在传感和检测分析物(尤其是生物成像)中的应用。关键词:荧光素,黄烷,荧光强度,生物成像,单醛
[摘要]肿瘤细胞通过代谢重编程适应了快速生长和分裂的需求,与正常细胞相比,具有不同的代谢特征,包括葡萄糖和氨基酸的失调,中央碳
【产品简介】 本产品是从高度耐热菌 Thermus aquaticus 中克隆其 DNA 聚合酶基因,原核表达后经柱层析纯化获得的超纯、高效、耐热 DNA 聚合 酶, SDS-PAGE 显示为一条 94kD 的蛋白条带。该酶除具有 5 ' -3 ' DNA 聚合活性外,还具有少量的 5 ' -3 ' DNA 外切活性,但不 具有 3 ' -5 ' DNA 外切活性(校读活性),适用于常规 PCR 扩增。 M5 HiPer plus Taq DNA Polymerase 扩增得到的 PCR 产物含有 3'-A 碱基,可直接用于 TA 克隆 ( 聚合美 TOPO-TA 克隆载体货号: MF019 或 MF020) 。
静脉窦。注射后一天,荧光素酶信号只能在肺中检测到,仅在N/P比> 3中检测到(图1B)。在6、8和10(分别为6.4 x 10 4,5.0 x 10 4和3.9 x 10 4光子/s)的N/P比时,肺中的荧光素酶表达水平相似(图1B)。,解剖了包括肺在内的不同器官,并分析器官提取物以表达荧光素酶表达。用发光仪测量荧光素酶信号,并表示为每毫克蛋白质的相对光单位(RLU)。如图1c所示,在整个动物中的生物发光成像与肺提取物中的荧光素酶测定之间观察到了良好的相关性。然而,在器官提取物上进行的荧光素酶测定能够检测到整个动物成像未检测到的荧光素酶表达水平较低。如图1D所示,在器官解剖和均匀化后,使用荧光素酶测定法在脾,肝,肾脏和心脏提取物中确定荧光素酶表达。在脾脏,肾脏和心脏中,8和10的N/P比似乎给出的荧光素酶表达更高,而N/P比6。在肝脏中,8的N/P略优于其他N/P比。因此,应将DNA与体内 - JETPEI®比率和注射条件应适应靶向器官。共同表明,IVIS100成像系统能够检测到99%的发射荧光素酶信号,而其余的1%可以通过在器官提取物上执行的荧光素酶测定法确定。
CRISPR-Cas9 系统为生物学基础研究和转化研究疾病模型的开发提供了强大的基因编辑工具。本研究的目的是利用包括 CRISPR-Cas9 和生物发光在内的先进技术来生成新的人类细胞系,用作癌症研究中的体外和体内模型。大约 50% 的黑色素瘤患者有 BRAF V600E 突变,并且通常在治疗几个月后对当前的 BRAF 抑制剂产生耐药性。KRAS G13D 是一种与对这些抑制剂的耐药性相关的获得性突变。在这项研究中,CRISPR-Cas9 用于将 KRAS G13D 点突变敲入 A375 恶性黑色素瘤细胞系,该细胞系也含有可靶向的 BRAF V600E 突变。由此产生的 KRAS G13D 突变同源系 A375 已在基因组、转录本和蛋白质生物功能水平上得到验证,在传统的 2D 和 3D 细胞培养中研究时,该突变系对 BRAF 抑制剂达拉非尼和维莫非尼表现出显著的抗性。基于上述体外模型,我们通过将稳定的荧光素酶报告基因引入同源 A375 和 KRAS G13D A375 细胞系,开发了用于活体动物生物发光成像的其他模型。对细胞内的相对和绝对生物发光信号进行了量化,发现发射 4.9 x 10 5 光子/细胞/秒(A375)和 3.5 x 10 5 光子/细胞/秒(KRAS G13D A375)。本研究采用皮下异种移植模型,并使用 Xenogen IVIS™ 成像系统量化体内活体生物发光信号,以将肿瘤生长与荧光素酶表达关联起来。A375-Luc2 和 KRAS G13D A375-Luc2 注射到裸鼠体内后均生长为皮下肿瘤,生物发光水平不断提高。此外,还开发了 5 对人类同源荧光素酶报告细胞系和 18 种人类和小鼠荧光素酶报告细胞系,用于研究各种癌症类型。总之,CRISPR-Cas9 技术和稳定的荧光素酶表达两种技术的结合可以生成同源荧光素酶表达细胞系,这些细胞系是阐明肿瘤发生机制和研究体外和体内药物反应的宝贵工具。