摘要:作为中药(TCM)的代表性活跃成分和临床批准的抗癌药,Elemene(Elee)在抗肿瘤领域表现出令人兴奋的潜力;但是,对于术后癌症复发和转移等特定疾病,仍需要探索适当的药物制剂。在此,我们报告了一个带有受控药物释放动力学的ELE水凝胶,该动力学可以使Ele长时间在局部病变部位保持有效浓度,以增强ELE的生物利用度。具体化,多巴胺偶联的透明质酸合成并用来制备ELE纳米果汁包裹的水凝胶。在术后乳腺癌复发和转移的模型中,Ele水凝胶显示出96%的复发率。相比之下,游离的ELE纳米果仅显示复发率为65.5%。Importantly, the ELE hydrogel markedly stimulates a potent antitumor immune response in the microenvironment of cancer lesions, increasing antitumor immune cells such as CD8 + T cells, CD4 + T cells, and M1-type macrophages, as well as elevating antitumor cytokines including TNF- α , IFN- γ , and IL-6.总体而言,这项研究不仅可以发展TCM领域,而且还强调了受控释放水凝胶在改善抗肿瘤治疗方面的变革性影响。■简介
在药物制剂中,可以根据需要改变活性药物成分(API)等因素,例如速率,位点或释放时间,以创建改良的释放(MR)剂型。MR制剂可以包括延迟释放,脉动释放,扩展释放等[1]。MR制剂提供了各种优势,包括降低给药频率,增加患者依从性,副作用减少和延长作用持续时间。最终,MR配方在加强患者生活质量的同时提供了更好的治疗结果。自从有史以来第一届美国食品药品监督管理局(美国FDA)批准的三维印刷平板电脑以来,人们对该技术在药物输送和生物医学应用中的应用产生了越来越多的兴趣。3D打印可以快速对药品的原型制作,从而使研究人员能够在短时间内筛选多个配方,从中选择理想的候选人。添加剂制造,通常称为3D打印,是一个以逐层方式打印3D对象的过程[2]。3D打印的最常见类型包括增值税光聚合(VPP),融合沉积建模(FDM),粉末床融合(PBF),喷墨写作和直接墨水写作[3]。在这篇评论中,我们将重点介绍用于制定修改的各种3D打印机
摘要:基于人工智能 (AI) 的配方开发是一种有前途的促进药物产品开发过程的方法。人工智能是一种多功能工具,包含多种算法,可应用于各种情况。以片剂、胶囊、粉末、颗粒等为代表的固体剂型是最广泛使用的给药方法之一。在产品开发过程中,包括关键材料属性 (CMA) 和工艺参数在内的多种因素都会影响产品特性,例如溶解速率、物理和化学稳定性、粒度分布和干粉的气溶胶性能。然而,传统的产品开发反复试验方法效率低下、费力且耗时。人工智能最近被认为是一种新兴的尖端药物配方开发工具,引起了广泛关注。本综述提供了以下见解:(1)制药科学中人工智能的一般介绍和监管机构的主要指导,(2)生成固体剂型数据库的方法,(3)数据准备和处理的见解,(4)人工智能算法的简介和比较,以及(5)人工智能在固体剂型中的应用和案例研究信息。此外,还将讨论基于深度学习的图像分析这一强大技术及其制药应用。通过应用新兴的人工智能技术,科学家和研究人员可以更好地理解和预测药物制剂的特性,从而促进更高效的药品开发过程。
抽象的骨转移性乳腺癌是由于乳腺癌转移而导致骨骼中的恶性肿瘤,其发病率在全球范围内增加。对骨骼转移的癌症的治疗仍然是一个挑战,因为抗癌药缺乏目标特异性。寻找有效的骨转移治疗方法仍然是一个紧迫的问题。为了增强紫杉醇(PTX)向骨转移酶病变的递送,在这项工作中设计并合成了一种新型的葡萄糖衍生物,该葡萄糖衍生物被用作脂质体配体来开发磁性脂质体G-Mlip(葡萄糖修饰的磁性磁性脂质体)。脂质体可以改善由葡萄糖转运蛋白1(GLUT1)介导的骨转移酶中的药物制剂,然后靶向癌细胞。通过薄膜水合 - 耗散法制备了PTX负载的磁性脂质体PTX-G-MLIP。和诸如大小,Zeta电位,封装效率,释放曲线,稳定性,溶血等表征得到了很好的评估。更重要的是,在体外和小鼠中还研究了增强的目标能力。与游离PTX和其他脂质体相比,在磁场(MF)存在下,骨转移酶病变中PTX-G-MLIP的PTX浓度显着增加。受到增强的靶向能力的启发,葡萄糖改性的磁性脂质体可以作为靶向和治疗骨转移的有效药物输送系统。
骨转移瘤的发病率和死亡率很高,且常随着病情进展而发展,尤其对于前列腺癌和乳腺癌患者。大多数药物很少分布到骨骼,因此在治疗骨转移瘤时药理学上无效。发展药物靶向技术是有效治疗骨转移瘤的必要条件。到目前为止,已开发出许多骨靶向配体,包括四环素类、双膦酸盐、天冬氨酸和适体,用于骨靶向递送抗肿瘤药物、肽/蛋白质药物、核酸药物和诊断成像剂。骨药物靶向系统领域首先开发了药物与骨靶向配体的偶联物,随后也开发了用这些骨靶向配体修饰的大分子载体和纳米颗粒。此外,前列腺特异性膜抗原 (PSMA) 和人表皮生长因子受体 2 (HER2) 抗体分别用于主动靶向骨转移性前列腺癌和乳腺癌。一些使用 PSMA 和 HER2 抗体的偶联物已被开发并用于临床试验。本综述总结了骨靶向递送系统开发方面的最新挑战以及治疗骨转移的策略。还讨论了未来开发新型药物制剂以优化骨转移治疗中的靶向药物递送。
部落和当地森林居民拥有关于周围植物的传统知识,这些植物可广泛用于治疗各种疾病。由于植物性草药经济、高效且副作用小,在新冠疫情后受到了极大的关注。糖尿病是一种众所周知的内分泌胰岛素激素代谢紊乱,是一种慢性疾病。本综述重点介绍了部落和当地人民用于治疗和管理 Telangana 糖尿病的药用植物的传统知识。该研究结合了基于文献的数据以及与人们的实地互动,结果显示 45 个科的 100 种植物被直接或与其他植物结合用于治疗糖尿病。豆科是主要科,其次是夹竹桃科和葫芦科,而树木是主要习性,其次是草药和攀缘植物。叶子主要用于药物制剂,其次是树皮和根/根茎。我们发现,只有 40 种植物的配方为人所知,而其他 60 种植物的配方尚未公开。在已知的配方中,粉末主要用于治疗,其次是糊剂和汤剂。总体而言,目前的综合评论表明,传统药用植物及其相关传统知识在治疗糖尿病方面具有潜力,为未来的生物勘探提供了一条途径。除此之外,这些物种应在原地和异地计划下进行保护和栽培,这对于可持续供应原材料以造福社会以及改善部落/当地人民的生活是必要的。
antiaris conexicaria lesch。是一棵在印度尼西亚特有的树,高约20-30 m。这项研究旨在筛选叶子,树皮及其根的植物化学成分。植物材料是从Samarinda植物园收集的。该物种在印度尼西亚被称为吹管毒物的来源。在其他国家 /地区Antiaris sp。植物零件(叶子,树皮和种子)用于民族植物学实践中,作为传统医学的原料。该植物的叶子,树皮和种子用于治疗梅毒,麻风病,癌症,并用作喉咙痛的泻药。筛查样品的植物化学成分首先要追踪生物碱,类固醇,单宁,酚类化合物,类黄酮和皂苷的大分子,并使用各种测试。生物碱,皂苷,单宁,菲洛巴素,类黄酮和萜类化合物。进行了高性能液相色谱二极管阵列检测(HPLC-DAD)。HPLC筛选毒素提取物均显示出存在甘酸,儿茶素,绿原酸,咖啡酸,硫酸酸,椭圆形酸,上瓜酸酯,常规,常规,等Quercitrin,槲皮素,槲皮素,槲皮素和kaemperol。该研究揭示了植物中存在的一系列二级代谢产物,这些代谢物可用于药物制剂,并将成为开发自然杀虫剂的候选物种。
摘要 - 在过去几十年中,活性物质的伏安检测占据了重要位置。在这项研究中,使用二氧化钛纳米颗粒和多壁碳纳米管与石墨烯氧化物片混合使用的新型高效电化学传感器,以对抗生素阿奇霉素的敏感检测进行敏感检测。结果表明,由于MWCNTS@GO上动员的TIO 2纳米导体,因此构造的电极对阿奇霉素检测(pH 7)具有出色的电催化活性(pH 7)。阿奇霉素的电化学行为是完全可逆的。进行了透射电子显微镜,X射线衍射,红外光谱和拉曼光谱分析,以检查IL-TIO 2 NPS@MWCNTS/GO/GCE界面的特殊性。通过在pH 7.0处应用环状伏安术和DPV,研究和优化了pH,积累时间,扫描速率以及创建所需的多壁碳纳米管的量。磷酸盐缓冲介质。结果表明,阿奇霉素的电氧化反应涉及的质子和电子数量相等。使用DPV方法将校准曲线绘制在10 -3至0.5×10 -6 m的浓度范围内。分别计算为1.772×10 -8 m和5.83×10 -8 m的检测限和定量极限。使用了所述方法来确定药物制剂以及人类血液和尿液样品中的阿奇霉素。良好的恢复值在96.6%和99.1%之间表明传感器在确定阿奇霉素方面的适用性,效率和可靠性。
溶解度和溶解速率的增强是药物开发的关键方面,特别是对于生物制药分类系统(BCS)II类药物,其特征在于低溶解度和高渗透率。本评论提供了针对与这些药物相关的挑战所采用的技术和策略的广泛概述,旨在提高其生物利用度和治疗功效。审查首先引入生物制药分类系统(BCS)及其在药物制剂中的重要性,强调了溶解度和溶解速率在确定口服生物利用度中的重要性。挑战,包括沿胃肠道沿胃肠道吸收的制剂困难和可变性。检查了各种溶解度增强的技术,例如粒径还原,盐的形成,溶解技术(共溶性,络合,络合,胶束化),固体分散,环糊精,环糊精络合和纳米粒子配方。此外,还探索了溶解速率提高的策略,包括纳米晶,表面活性剂,喷雾干燥和多孔载体。此外,综述强调了在体外和体内的溶解度和溶解速率的常见评估技术,对于评估配方策略的有效性至关重要。强调了这些技术在预测药物行为和完善药物输送机制方面的重要性。总体而言,这项全面的综述强调了提高药物开发中的溶解度和溶解速率的重要性,尤其是对于BCS II类药物,并为克服制剂挑战的多种策略和方法提供了宝贵的见解,并改善了药物生物利用性和治疗效果。
大麻主要通过与内源性大麻素系统的相互作用来影响情感状态、情绪和感知处理,这一点已得到充分证实。尽管大麻的使用在许多患有精神疾病的人群中相当普遍,但大麻是否会加重这些疾病或提供某种形式的治疗益处仍存在很大争议。与大麻中发现的植物大麻素相比,与内源性大麻素系统成分相互作用的方式更局部、更离散的药物制剂的发展,使得人们能够研究直接针对内源性大麻素系统本身是否可能代表一种治疗精神疾病的新方法,而不会产生与大麻相关的潜在不良副作用。本文回顾了当前关于针对内源性大麻素系统开发的各种药理学工具的文献,它们对精神疾病临床前模型的影响以及最近出现的有关它们在精神疾病临床试验中的应用数据,特别关注物质使用障碍、创伤相关疾病和自闭症。我们重点介绍了几种针对内源性大麻素功能的候选药物,特别是内源性大麻素代谢抑制剂或大麻素受体信号调节剂,它们已成为治疗精神疾病的潜在候选药物,特别是物质使用障碍、焦虑和创伤相关疾病以及自闭症谱系障碍。虽然需要持续进行临床工作来确定内源性大麻素类药物在治疗精神疾病方面的潜在效用,但目前可用的数据非常有希望,并表明几种潜在的候选疾病可能受益于这种方法。