混合的2D/3D钙钛矿材料对光伏和发光二极管(LED)群落特别感兴趣,因为与常规3D Perovskite吸收者相比,它们令人印象深刻的光电电特性以及改善的水分稳定性。在这里,研究了一种混合铅锡钙钛矿,其中含有3D结构或高度相岩石ruddlesden – Popper 2D结构的独特的自组装结构域。用超快的瞬态吸收测量值揭示了材料的复杂能量景观。表明,这些显微镜结构域之间的电荷转移仅发生在纳秒时尺度上,这与域的大尺寸一致。使用光泵 - terahertz探针光谱法,有效的电荷载体迁移率被证明是类似的纯2D和3D perovskites之间的中介。此外,提出了对自由载体重组动力学的详细分析。通过在光激发载体种群的完整动态模型中结合一系列激发波长的结果,可以表明,纤维中的2D域与3D域具有非常相似的载波动力学,这表明不应由材料的异型结构构成远距离电荷传输。
混合的2D/3D钙钛矿材料对光伏和发光二极管(LED)群落特别感兴趣,因为与常规3D Perovskite吸收者相比,它们令人印象深刻的光电电特性以及改善的水分稳定性。在这里,研究了一种混合铅锡钙钛矿,其中含有3D结构或高度相岩石ruddlesden – Popper 2D结构的独特的自组装结构域。用超快的瞬态吸收测量值揭示了材料的复杂能量景观。表明,这些显微镜结构域之间的电荷转移仅发生在纳秒时尺度上,这与域的大尺寸一致。使用光泵 - terahertz探针光谱法,有效的电荷载体迁移率被证明是类似的纯2D和3D perovskites之间的中介。此外,提出了对自由载体重组动力学的详细分析。通过在光激发载体种群的完整动态模型中结合一系列激发波长的结果,可以表明,纤维中的2D域与3D域具有非常相似的载波动力学,这表明不应由材料的异型结构构成远距离电荷传输。
摘要 - 用于协作机器人技术应用程序,许多系统已经解决了近年来的一般处理问题。根据工业环境,这些系统带来了身体和认知的感觉,从而导致用户接受。透明度合格机器人遵循操作员施加的运动的能力,而无需注意任何抵抗力。本文的理论是开发一种方法,该方法将强调人为因素的方法及其与机器人标准的相关性混合在一起,而在被动操纵臂则与新尼奥德基公司产生的六个自由度。然后进行了一项探索性研究,以测量操纵过程中的时间,速度和努力以及基于技术层面,人格和技术ACCEPTACTACTACTACTACTACTACTACTACTACTACTAD模型方法调查表的标准。从那里,我们发现了用户的个性,尤其是他们缺乏神经质的性格与通过机械行为的有用性,舒适性和指标来评估设备的手段之间的相关性。这项研究是对用户行为和特征的初步分析,这些特征是在处理熟练臂时接受技术接受的。这项工作为将来的分析提供了一个框架,并建议对ARM进行机械调整以增加用户接受。
通过证明宏观导体可以表现出强大的D.C.量子元素的转运性能,整数量子大厅效应(IQHE)[1?–4]是一个重大惊喜。立即承认了这一分类对计量学的重要性[1],并导致了欧姆的重新编号[5?]。量子厅导体的有限频率响应已被计量师进行了深入研究:使用A.C.有限频率F的桥显示了与预期值r k / 2 = h / 2 e 2 [6-10]的仪器电阻r H(f)的出发。然后归因于“固有电感和电容” [11,12]。后来,Schurr等人提出了一个双屏蔽样品,允许使用频率独立的电阻标准[13],但是这些作品留下了这些电容和电感的起源问题。另一方面,量子相干导体的有限频率转运概述,其大小小于电子相干长度,预计将由量子效应支配。对于诸如碳纳米管[14]或石墨烯[15]等低维型电控器,电感纯粹是动力学的。小型超级传导电感器[16,17]现在用于太空工业[18]是基于库珀对的惯性。对于量子相干导体,B˝uttiker及其合作者[19-21]开发的理论将关联L/R或RC时间与Wigner-Smith的时间延迟有关,用于在导体跨导载器散射的情况下。在这封信中,我们在A.C.中证明了这一点。政权,这些显着的预测已通过量子hall r-c [22]和r-l [23,24]在高温温度下的GHz范围内的量子霍尔R-C [22]和R-L [23,24]电路的有限频率入学确定。
摘要:共轭聚合物是多种下一代电子设备中使用的多功能电子材料。这种聚合物的效用在很大程度上取决于其电导率,这既取决于电荷载体(极性)的密度和载体迁移率。载流子的迁移率又受极性柜台和掺杂剂之间的分离而在很大程度上控制,因为柜台可以产生库仑陷阱。在先前的工作中,我们显示了基于十二烷(DDB)簇的大掺杂剂能够减少库仑结合,从而增加晶状体(3-己基噻吩-2,5-二苯基)的载流子迁移率(P3HT)。在这里,我们使用基于DDB的掺杂剂研究化学掺杂的降级(RRA)P3HT的极化子 - 反子分离的作用,这是高度无定形的。X射线散射表明,DDB掺杂剂尽管大小较大,但在掺杂过程中可以部分订购RRA P3HT,并产生与DDB掺杂的RR P3HT相似的掺杂聚合物晶体结构。交替场(AC)霍尔测量值还确认了类似的孔迁移率。我们还表明,大型DDB掺杂剂的使用成功降低了无定形聚合物区域的极性和柜台的库仑结合,从而在RRA P3HT膜上呈77%的掺杂效率。DDB掺杂剂能够生产具有4.92 s/cm电导率的RRA P3HT膜,该值比3,5,6-Tetrafluoro-7,7,7,8,8-8,8-四乙酸氨基甲烷(F 4 TCNQ)(F 4 TCNQ),传统的载量约为200倍。这些结果表明,在共轭聚合物的无定形和半晶体区域量身定制掺杂剂,是增加可实现的聚合物电导率的有效策略,尤其是在具有随机区域化学的低成本聚合物中。结果还强调了掺杂剂的大小和形状对于产生能够在较少有序的材料中电导的库仑未结合的移动极性的重要性。
本文研究了硅P-I-N光二极管中少数荷载载体的收集系数以及某些技术因素对其的影响。已经发现,由于光生荷载体的收集面积随着这些参数的增加而增加,因此少数荷载体的扩散长度和材料的电阻率对收集系数的值有显着影响。还发现,增加光电二极管收集系数的有效方法是确保光电二极管的高阻力区域的厚度等于少数荷载体的扩散长度的总和和空间电荷区域的宽度。研究了掺杂剂浓度对响应性和收集系数的影响。发现,与计算出的数据相反,在实验数据中,收集系数随着磷和硼浓度的浓度而增加,并且杂质的响应率降低,杂质的浓度降低,收集系数的降低是由于杂物的程度降低,而造成较小的范围较小的延伸率,而造成较小的频率延伸的速度延伸,并且频率降低了范围的延伸范围。关键字:硅; photodiode;反应性; tharge tomerclection;屏障容量PAC:61.72。ji,61.72.lk,85.60.dw
从低成本,非易光度和高运营安全性的优点中获得的好处,可充电电池已成为大规模能源储存应用的有希望的候选人。在各种金属离子/非金属电荷载体中,质子(H +)作为电荷载体具有许多独特的特性,例如快速质子差异动力学,低摩尔质量和较小的水合离子半径,它们具有赋予水性质子电池(APB),具有正式的速率能力,长期的较低型较高的型号和出色的型号仪表仪,并具有出色的仪表仪。此外,具有结构多样性,丰富的质子存储位点和丰富资源的优势的氧化还原活性有机分子被认为是APB的有吸引力的电极材料。但是,APB中有机电极的电荷存储和传输机制仍处于起步阶段。因此,发现合适的电极材料并发现H +储存机制对于在APB中应用有机材料是显着的。在此,审查了有机材料的最新研究进度,例如小分子和APB的聚合物。此外,还提供了使用有机电极作为阳极和/或阴极的APB进行的全面摘要和评估,尤其是关于它们的低温和高功率性能,以及用于指导理性设计以及基于有机电极的APB的系统讨论。
近几十年来,随着我国地铁的快速发展,在役盾构隧道衬砌的维护成为亟待解决的问题。外荷载是影响在役盾构隧道变形和性能的重要因素之一,但影响外荷载的因素复杂,难以评估,且现有理论没有考虑任意分布的外荷载。基于Betti定理,提出了一种利用隧道衬砌变形来评估外荷载的新方法。分析了所提方法的理论合理性,并给出了工作流程。采用模型试验数据和仿真模型验证了所提方法的有效性和准确性。结果表明,外荷载可以以令人满意的精度进行反分析,并且计算成本较低。最后,以某在役盾构隧道为例,进行了实际应用,并提出了激光扫描与反分析相结合的对外荷载评估工作流程。所提方法可用于基于隧道内部扫描衬砌变形的外部荷载反分析,具有良好的性能。