在过去的三十年中,这些等级的机械性能几乎没有变化,但化学分析已经进行了调整以提高缺口韧性。此外,ABS 要求所有厚度的 CS 和 E 级以及 1.375 英寸以上的 D 级进行正火处理,以进一步提高缺口韧性。B、D 和 E 级需要在 0°F 和 -40°F 之间的温度下进行夏比试验。请注意,曾经常用的沸腾钢现在已被禁止,但 1/2 英寸以下的 A 级除外。
这些材料中表达的任何陈述均为个人作者的观点,并不一定代表 ASCE 的观点,ASCE 对本文中的任何陈述不承担任何责任。本出版物中对任何特定方法、产品、流程或服务的引用并不构成或暗示 ASCE 对其的认可、推荐或保证。这些材料仅供一般参考,并不代表 ASCE 的标准,也不旨在作为采购规范、合同、法规、法令或任何其他法律文件中的参考。ASCE 对本出版物中讨论的任何信息、设备、产品或流程的准确性、完整性、适用性或实用性不作任何明示或暗示的陈述或保证,并且不承担任何责任。在未事先就这些材料中的信息是否适用于任何一般或特定应用获得专业建议的情况下,不得使用这些材料中包含的信息。任何使用此类信息的人都承担由此产生的所有责任,包括但不限于侵犯任何专利。
摘要 - 用于协作机器人技术应用程序,许多系统已经解决了近年来的一般处理问题。根据工业环境,这些系统带来了身体和认知的感觉,从而导致用户接受。透明度合格机器人遵循操作员施加的运动的能力,而无需注意任何抵抗力。本文的理论是开发一种方法,该方法将强调人为因素的方法及其与机器人标准的相关性混合在一起,而在被动操纵臂则与新尼奥德基公司产生的六个自由度。然后进行了一项探索性研究,以测量操纵过程中的时间,速度和努力以及基于技术层面,人格和技术ACCEPTACTACTACTACTACTACTACTACTACTACTACTAD模型方法调查表的标准。从那里,我们发现了用户的个性,尤其是他们缺乏神经质的性格与通过机械行为的有用性,舒适性和指标来评估设备的手段之间的相关性。这项研究是对用户行为和特征的初步分析,这些特征是在处理熟练臂时接受技术接受的。这项工作为将来的分析提供了一个框架,并建议对ARM进行机械调整以增加用户接受。
完整的住宅设计通常需要评估几种不同类型的材料,如第 4 章至第 7 章中所述。一些材料规范使用允许应力设计 (ASD) 方法,而其他材料规范使用荷载和抗力系数设计 (LRFD)。第 4 章使用 LRFD 方法进行混凝土设计,使用 ASD 方法进行砌体设计。对于木材设计,第 5、6 和 7 章使用 ASD。因此,对于单个项目,可能需要根据两种设计格式确定荷载。本章提供了针对每种方法的荷载组合。单个标称荷载的确定基本不受影响。本文不涉及洪水荷载、冰荷载和雨荷载等特殊荷载。读者可以参考 ASCE 7 标准和有关特殊荷载的适用建筑规范规定。
近几十年来,随着我国地铁的快速发展,在役盾构隧道衬砌的维护成为亟待解决的问题。外荷载是影响在役盾构隧道变形和性能的重要因素之一,但影响外荷载的因素复杂,难以评估,且现有理论没有考虑任意分布的外荷载。基于Betti定理,提出了一种利用隧道衬砌变形来评估外荷载的新方法。分析了所提方法的理论合理性,并给出了工作流程。采用模型试验数据和仿真模型验证了所提方法的有效性和准确性。结果表明,外荷载可以以令人满意的精度进行反分析,并且计算成本较低。最后,以某在役盾构隧道为例,进行了实际应用,并提出了激光扫描与反分析相结合的对外荷载评估工作流程。所提方法可用于基于隧道内部扫描衬砌变形的外部荷载反分析,具有良好的性能。
荷载条件 – 允许用户在内部荷载或边缘荷载下进行路面评估。选择内部荷载时,荷载将施加在远离边缘或接缝的板上。选择边缘荷载时,荷载将沿板的边缘施加。请参阅本文档后面的相关讨论,以了解内部荷载和边缘荷载条件之间的差异以及何时使用每个选项的适当性。单位 – AirPave 可以使用美国习惯单位或 SI 单位。· 使用美国单位: o 路面板厚度为英寸 (in.)o 接触面积以平方英寸 (in 2 ) 为单位 o 轮胎压力、混凝土强度 (MR) 和应力以磅/平方英寸 (psi) 为单位 o 基层/路基反应模量 (k) 以磅/立方英寸 (pci) 为单位 o 混凝土弹性模量 (E) 以百万 psi 为单位 · 使用国际单位制: o 路面板厚度为厘米 (cm) o 接触面积以平方厘米 (cm 2 ) 为单位 o 轮胎压力、混凝土强度 (MR) 和应力以千帕 (kPa) 为单位 o 基层/路基反应模量 (k) 以兆帕/米 (MPa/m) 为单位 o 混凝土弹性模量 (E) 以兆帕 (MPa) 为单位
钢筋混凝土桥梁结构在使用过程中不仅要承受车辆过境引起的高频疲劳荷载,还要受到腐蚀环境的影响。长期的疲劳荷载除了对钢筋造成疲劳损伤外,还会引起混凝土开裂、孔结构恶化,从而加速外界腐蚀物质的侵入,降低混凝土的耐久性。长期处于腐蚀环境中也会降低混凝土的性能,引起钢筋材料的锈蚀,影响结构的疲劳性能。因此,疲劳荷载和腐蚀对混凝土存在着共同的影响。本文从材料的角度对混凝土在疲劳荷载和腐蚀的共同作用下,即碳化、氯离子侵蚀、冻融循环、硫酸盐侵蚀下的性能退化进行了综述。本文包括 (1) 疲劳荷载和腐蚀联合作用的试验方法描述,(2) 疲劳荷载和腐蚀联合作用下混凝土性能退化的总结,以及 (3) 考虑疲劳损伤的耐久性退化模型和可以考虑腐蚀的疲劳模型的介绍。最后,描述了疲劳荷载和腐蚀联合作用下混凝土未来的潜在研究。