-2D 先进鹰眼和机载水雷对抗系统以及美国空军 E-8 联合 STARS。作为墨尔本站点负责人,齐尔奇还为佛罗里达墨尔本站点提供行政领导,此外还负责 MDC2 产品组合和其他工程、设计和开发活动。齐尔奇于 2015 年加入诺斯罗普·格鲁曼公司,在那里她承担了越来越重要的职责。在担任舰队保障主管,负责所有 E-2C、E-2D 和 C-2 战备活动之后,她担任 MDC2 产品组合的副 IPT 负责人,随后被任命为副总裁。她为诺斯罗普·格鲁曼公司带来了在海军航空系统司令部 (NAVAIR) 的丰富领导经验,包括项目管理和承包职位。齐尔奇曾任海军空中交通管理系统 PMA-213 的首席副项目经理,负责空中交通管制、战斗 ID 和精确进近着陆系统的采购和工程要求。在此之前,Zilch 在整个系统开发和演示项目中担任 PMA-231 E-2D 综合项目团队负责人。
DIREXION™ 和 DIREXION HI-FLO™ 可扭转微导管警告:联邦法律 (美国) 限制此设备由医生或根据医生的处方销售。仅限处方。使用前,请参阅完整的“使用说明”以获取有关适应症、禁忌症、警告、注意事项、不良事件和操作说明的更多信息。预期用途/使用指征:Direxion 和 Direxion HI-FLO 可扭转微导管适用于外周血管。预装的 Fathom 和 Transend 导丝可用于选择性地将微导管引入和定位在外周血管中。微导管可用于将诊断、栓塞或治疗材料控制和选择性地输注到血管中。禁忌症:未知。警告:• 切勿在阻力下推进或撤回血管内装置,除非通过荧光透视确定阻力的原因。逆着阻力移动微导管或导丝可能会导致微导管或导丝尖端损坏或分离,或血管穿孔。• Direxion 微导管系列不适用于冠状动脉血管或神经血管。• Direxion HI-FLO 微导管不是为输送栓塞线圈而设计的。• 用过大的力逆着阻力操纵微导管可能会导致镍钛合金轴断裂。注意不要过度扭转微导管,在撤回前通过反方向旋转微导管来释放任何张力。注意事项:• 只有经过全面培训的经皮血管内技术和程序医生才能使用本装置。• 请勿在没有导丝支撑的情况下插入微导管,因为这可能会损坏导管的近端轴。 • 由于微导管可能会进入狭窄的亚选择性脉管系统,因此要反复确保微导管没有进入太远,以免干扰其取出。不良事件:不良事件包括但不限于:• 过敏反应 • 死亡 • 栓塞 • 出血/血肿 • 感染 • 假性动脉瘤 • 中风 • 血管血栓形成 • 血管阻塞 • 血管痉挛 • 血管创伤(解剖、穿孔、破裂)90960724 Rev/Ver AB.6
人们对天然蚕丝作为工程复合材料的替代增强材料的兴趣日益浓厚。本文,我们在相关研究背景下总结了作者过去几年对两种常见蚕丝和蚕丝纤维增强塑料 (SFRP) 的研究。家蚕丝纤维由于其弹塑性变形机制,在常温和低温条件下表现出良好的强度和韧性。特别是野生柞蚕丝还表现出微米和纳米纤维化,这是其韧性和抗冲击性的重要机制。对于 SFRP 复合材料,我们发现:(i) 为获得最佳增强增韧效果,必须将蚕丝纤维体积分数达到 50% 以上;(ii) 更坚韧的柞蚕丝比家蚕丝具有更好的增强增韧作用;(iii) 冲击性能和韧性是 SFRP 的优势性能;(iv) 天然蚕丝与其他纤维杂交可以进一步提高 SFRP 的机械性能和在工程应用中的经济性; (五)轻量化结构设计可以提高 SFRP 的能量吸收效率。对蚕丝和蚕丝纤维增强聚合物复合材料 (SFRP) 的综合力学性能和增韧机制的了解可以为材料设计和应用提供关键见解。
玛莎百货是如何应对的?——玛莎百货致力于投资于值得信赖的价值并减少促销,这是我们对顾客做出的“首次定价”承诺的一部分。——食品方面,40 多种“Remarksable”产品(我们的日常杂货系列)降价,另外 90 种产品线“降价并锁定价格”。这些价格调整得到了顾客的积极响应,Remarksable 销售额增长了 34%。——服装和家居方面,我们的“值得信赖的价值”活动于 1 月连续第二年启动,重点关注我们的质量差异点。该活动凸显了玛莎对高价值的承诺,这意味着创造性价比高、质量上乘、让顾客相信衣服合身且清洗方便的服装。——我们还承诺连续第三年保持校服价格不变(校服是全国数百万家庭的必需品)。我们销售的每一件校服都经过精心设计,经久耐用,并通过了“传家宝”质量测试。– 我们的同事也是顾客,我们希望确保他们有动力在 M&S 购物。今年,我们行业领先的 20% 同事折扣扩展到服装、家居和食品领域的所有品牌产品,包括线上和线下。
Kate Reidy 目前是麻省理工学院材料科学与工程专业的博士候选人和 MITei 研究员,在 Frances M. Ross 教授的指导下工作。她在爱尔兰都柏林圣三一学院获得了纳米科学、物理学和先进材料化学学士学位。她的研究采用“自下而上”的方法进行纳米级设计,通过了解和操纵材料的原子结构来调整材料特性。她开发了超高真空和环境原位透射电子显微镜 (UHV-TEM 和 ETEM) 方法,这些方法提供高空间和时间分辨率,以阐明原子尺度上的动力学生长机制、化学成分和对刺激的反应。她的工作得到了麻省理工学院工程学院 William Asbjornsen Albert 奖学金、麻省理工学院能源计划奖学金、MathWorks 工程奖学金和麻省理工学院 Lemelson-Vest 学生创新奖的认可。在实验室之外,她担任麻省理工学院研究生院 (DCGS) 的代表,帮助重新设计研究生核心课程,并担任麻省理工学院材料科学女性和性别少数群体 (WXOMS) 董事会成员。
坎帕尼亚大学“Luigi Vanvitelli”应用数学、物理学和工程学博士学位 研究用于电信应用的近红外光电探测器,基于由氢化非晶硅、石墨烯和晶体硅(a-Si:H/Gr/c-Si)组成的混合光子结构 ❖ 开发 COMSOL Multiphysics 模拟(FEM 有限元法),用于设计集成在波导中工作在 1.55um 的光电探测器 ❖ 在 Matlab 中开发实现传输矩阵法(TMM)的数值模拟,用于设计集成在谐振腔中的光电探测器。 ❖ 洁净室中的微制造活动:石墨烯上三维材料沉积技术的研究、光电探测器的制造 ❖ 材料和器件的电气和光学特性。 ❖ 作为生物芯片项目的一部分,向那不勒斯微电子与微系统研究所 (CNR-IMM) 提供研究资助,用于高危地区人群的慢性淋巴细胞白血病的快速诊断和跟踪。主题:基于氧化锌纳米线的生物传感器的制造和电气特性。 ❖ 洁净室微制造活动:用于氧化锌纳米线生长的水热技术、热退火和热氧化工艺、金属蒸发、通过直流磁控溅射进行材料沉积。 ❖ 纳米结构生物传感器的电气特性 ❖ 使用 MATLAB 程序分析和可视化实验数据