结果和讨论:我们发现线粒体基因组的长度长度为401,301 bp,其GC含量为45.15%。它由53个基因组成,包括32个蛋白质编码基因,3个核糖体RNA基因和18个转移RNA基因。在线粒体基因组中总共存在146个散射重复序列,8个串联重复序列和124个简单的序列重复序列。对所有蛋白质编码基因的彻底检查揭示了485个RNA编辑和9579个密码子的实例。此外,在角膜软骨基因组和叶绿体基因组中鉴定了57个同源片段,占线粒体基因组的约4.04%的叶绿体基因组。此外,这是一种基于来自属于四个Fabaceae亚家族的33个物种的线粒体基因组数据,而其他家族的两个物种验证了莲花的进化关系。这些发现对理解角膜乳杆菌基因组的组织和演变以及遗传标记物的识别具有重要意义。他们还提供了与制定豆类分子育种和进化分类策略有关的有价值的观点。
莲花种子敏感易腐和褐变。但是,很少有出版物强调UV-C治疗的应用。这项工作的目的是评估UV-C辐射对储存期间4℃储存过程中莲花种子的物理化学和微生物质量的潜在影响,持续8天。评估了5分钟和10分钟的UV-C暴露时间。结果表明,10分钟-UV-C处理的莲花种子的总可行数量达到了泰国工业标准研究所(TISI)脆皮莲花种子(TCPS 490-2547)(≤3log cfu/g)的标准质量,尽管所有处理的酵母和模具均未受UV-C辐射的影响。此外,与对照处理相比,在UV -C处理的样品中发现了10分钟,酚含量的降低水平不受UV -C的影响,而酚含量的积累和产物软化的延迟。因此,处理10分钟的UV-C可以用作控制储存期间莲花种子产品总细菌数量生长的一种有希望的方法。
液滴撞击动力学一直是液滴研究的重点和热点,深入挖掘液滴撞击动力学机理有利于自上而下指导和优化材料设计。随着高速成像技术的发展和创新[13],液滴撞击的瞬态流动可以在微观时间尺度上被清晰地记录下来。单个液滴在不同表面的撞击得到了更广泛的研究。Richard等人认为液滴撞击光滑超疏水表面的接触时间与撞击速度无关,而与液滴半径的3/2次方成正比。[14]对于具有圆对称扩散和反冲的液滴撞击,存在一个接触时间的理论极限( / / 2.2 0 3 t R τ ρ σ = ≥ ∗,[15]其中,ρ是液体的密度,R 0是液滴半径,σ是其表面张力,t是固液接触时间)。为了突破这一极限,科学家通过设计和修改超疏水材料的表面结构,强化和精确控制单个液滴的反弹行为,如减少4倍接触时间的煎饼反弹[16]和7300 r min −1 的旋转反弹[17]。虽然这些研究已经被广泛应用于解决喷墨打印[18]、微流体[19]和喷雾[20]的问题,但较少受到关注的多液滴模型在自然界、日常生活和工程中更为常见和适用(例如,冻雨对电网的灾难性影响)。多液滴模型可分为连续液滴[21]、液滴列车[22]、同时液滴[23]和液滴喷雾[24]等。越接近真实情况,越复杂,研究难度越大。[25]作为该领域的先驱,Fujimoto等人[26]和Schwarzmann等人[27]在多液滴模型中[28]进行了系统研究。采用闪光照相法和数值模拟相结合的方法,研究了液滴直径和撞击速度对液滴撞击固体的影响。[26,27] Sanjay等人用撞击油滴从超疏水表面提起静止的油滴,观察到了随着韦伯数(ρσ=02WeDv,其中D0为液滴直径,v为撞击速度)和质心偏移而产生的六种结果,其中四种结果不是聚结而是反弹。[28] Damak等人实验研究了液滴连续撞击超疏水表面的最大膨胀直径和回缩速率,并建立了通用模型来描述它们。[29]由于多体问题的复杂性和相互作用,大多数学者主要使用数值模拟
根据 2000 年 11 月 3 日《巴马科宣言》以及与该宣言相关的决议的建议,保护人权维护者,该决议十年后于 2010 年由上届法语国家国家元首和政府首脑会议通过,去年十月在蒙特勒举行。法语国家组织定期向保护人权维护者观察站(FIDH 和 OMCT 的联合项目)提供支持,并参加机制间会议,以促进对人权维护者的国际保护。它还资助法语世界众多地方人权协会的活动,特别是支持公共当局和人权维护者之间的圆桌会议。