获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
知识图嵌入(KGE)是用于知识图完成的有效且可扩展的方法。但是,大多数现有的KGE方法都遭受了多种关系语义的挑战,这常常会降低其性能。这是因为大多数KGE方法都学习实体(关系)的固定连续向量,并做出确定性实体预测以完成知识图,这几乎无法捕获多个关系语义。为了解决这个问题,预先的作品试图学习复杂的概率嵌入,而不是固定的嵌入,但遭受了严重的计算复杂性。相比之下,本文提出了一个简单而有效的框架,即知识图扩散模型(KGDM)以捕获预测中的多个关系语义。它的关键思想是将实体问题的问题投入到条件实体生成中。具体而言,KGDM通过降级扩散概率模型(DDPM)来估计目标实体在预测中的概率分布。为了弥合连续扩散模型和离散kg之间的间隙,将两个可学习的嵌入功能定义为映射实体和与连续向量的关系。为了考虑KGS的连通性模式,引入了条件实体Denoiser模型,以生成针对给定实体和关系的目标实体。广泛的实验表明,KGDM在三个基准数据集中的现有最新方法明显优于现有的最新方法。