菊花 (Dendranthema grandiflora Tzvelve syn. Chrysanthemum morifolium Ramat.) 是世界上最重要的开花作物之一。花卉因其多样的颜色、形态、大小、形状和用途而备受推崇。开发具有新特征的菊花品种,以适应其不同的花色、形状、大小、开花时间、采后品质对生物和非生物胁迫的耐受性。近年来,研究人员使用各种常规和非常规育种技术来了解形态和分子水平上的分类研究、相关性和关联,包括转基因技术、基因组编辑和标记辅助选择 (MAS) 与野生近缘种,以将各种观赏性状从野生型引入栽培品种。此外,高通量技术,特别是基因组学、转录组学、蛋白质组学、代谢组学和微生物组学(统称为组学平台)的最新进展导致了大量数据的收集。通过生物技术方法实现的主要特性包括开发新的花色、改变花和植物形态、抗虫害和抗病性以及增强收获后属性。本综述总结了传统和现代分子育种方法以及新兴技术在花卉栽培方面取得的最新成就。
摘要 菊花是全球销量最高的四种切花之一。基因编辑是研究基因功能的重要工具,但目前尚无高效、精准的菊花基因组编辑工具。本研究建立了CRISPR/Cas9介导的基因编辑系统,以探索基因功能并提高菊花育种水平。我们利用Golden Gate Assembly系统构建了CRISPR/Cas9载体,用于双靶向Phytoene Dehydro(PDS)基因。为了测试sgRNA设计的准确性,我们最初使用了植物中的瞬时CRISPR/Cas9编辑(TCEP)方法。经瞬时转染的9株植物中靶基因表达量为正常水平的19.1%–52%,证实了靶基因敲除的可行性。我们进行了稳定转化;PCR 和靶位测序表明,获得的八株白化植物中有四株在靶位点进行了稳定编辑。我们通过靶向另一个基因 CmTGA1 进一步评估了该系统的编辑效率,之所以选择该基因,是因为它在菊花白锈病 (CWR) 疾病进展中具有潜在重要性。我们的数据表明,结合瞬时和稳定转化可提高基因组定点编辑的效率和成功率。我们在此建立的有效、可遗传的 CRISPR/Cas9 介导的基因组编辑系统为 C 的功能基因研究和遗传改良奠定了基础。菊花。
摘要:菊花莫里氏菌是一种有价值的植物,含有各种植物化学化合物,并展示了各种生物学活性。使用2,2-二苯基-1-苯基氢化唑和2,2'-氮杂性(3-乙基苯甲酸苯胺-6-磺酸)的含量分析,使用2,2-二苯基1-苯二羟基羟基苯基和2,2' - 氮杂型,使用12二苯基-6-硫代硫酸化的测定量,使用量子量的量子量,使用量子上的含量分析,对17种不同品种的17种不同品种的羊皮菌的叶子和花朵提取物进行了抗氧化活性。二极管阵列检测。我们发现,与其他品种相比,“福特”和“ Raina”品种表现出强大的抗氧化能力和高酚类化合物含量,而“ cielo”的花朵和“白帽”的花朵在这两个测定中均表现出低抗氧化能力。“ Cielo”品种也显示出最低的化合物含量。此外,在大多数样品中,3,5-二甲基二酸酯和4,5-二甲基烯酸酸在提取物中脱颖而出。这项研究提供了基本知识,可用于选择适当的C. morifolium品种以进行进一步研究。此外,可以应用“福特”和“ Raina”品种,其中包含大量的生物活性化合物并表现出优异的抗氧化能力,可用于生产健康脱皮产品。
摘要 积累在植物组织和结构(如腺毛和薄表皮层)表面的化合物被定义为渗出物、外部化合物和浅表化合物。它们表现出重要的保护活性——抗真菌、抗菌、拒食昆虫、杀幼虫、抗疟原虫和防紫外线。评估了从蜡菊花中获得的渗出物对黑麦草种子发芽和初始胚根伸长的抑制活性。该实验在培养皿中体外进行。在水-丙酮混合物(99.5:0.5)中,以 1、3、5、7 和 10 mg/mL 的浓度测定渗出物。用 GC/MS 分析渗出物的化学成分。发现浓度为 5 mg/mL 的渗出液可导致 90% 以上的种子发芽抑制。在相同浓度下,观察到根部生长被完全抑制。分泌物的主要生物活性成分被鉴定为黄酮苷元-柚皮素。本研究首次研究了H. arenarium对种子发芽的抑制活性。
菊花含量,东亚本地的一种物种众所周知,是耕种的菊花的祖细胞之一,该物种以其观念和药用价值而生长。先前关于菊花的基因组研究在分析该植物谱系时,很大程度上忽略了质体基因组(质体)和线粒体基因组(有丝分裂基因组)的动力学。在这项研究中,我们测序并组装了二倍体和四倍体C的质体和有丝分裂组。芳香。我们使用了来自27种具有质体和有丝分裂组完整序列的数据,以探索细胞器基因组之间序列演化的差异。二倍体和四倍体C中的细胞器基因组的大小和结构通常相似,但四倍体C. indimum和C. indimum var。芳香族在有丝分裂组中包含独特的序列,这些序列还包含先前未描述的开放式阅读框(ORF)。跨菊花有丝分裂组的结构变化很大,但是从质体转移到有丝分裂基因组的序列得到了保存。最后,有丝分裂基因组和质子基因树之间观察到的差异可能是这两个基因组中基因之间序列演化速率差异的结果。总共提出的发现大大扩展了研究菊花细胞器基因组进化的资源,并可能在将来可以应用于保护,育种和基因库。
摘要:属于Asteraceae家族的Chrysanthemum(Chrysanthemum morifolium ramat),并以切花,松散的花朵和盆栽植物而在市场上找到自己的位置。在2022 - 23年期间,在花卉和景观建筑系,园艺和林业学院,中央农业大学,Pasighathal Pasighatal Pradesesh,Arununach pradeSh,在2022 - 23年间,在RBD中评估RBD中的植物和开花角色的植物和开花角色的表现,进行了三个实验,以进行了一项实验。在所有字符中都观察到了20种基因型之间的显着变化。基因型BC-24记录的最大叶长度(12.67厘米)和最大叶柄长度(3.30厘米)。观察到最大的叶片宽度(6.59厘米)的基因型Bidhan Sweeta。在基因型BC-31,最大射线小花长度(3.93 cm)中发现了最大的花头高(3.67 cm),并且在基因型Bidhan Shova中观察到最大射线小花长度(3.93 cm)和最大射线小花宽度(0.85 cm)。在评估的20种喷雾菊花基因型中,Bidhan Mallika和Bidhan Sweeta在花色方面表现最好,菊花基因型在其叶子颜色,花朵头类型和花色的变化方面具有广泛的变化,可用于各种目的。
蓝细菌是内陆水域藻类开花的主要因素,威胁生态系统功能和用水的用途,尤其是在产生毒素的菌株占主导地位时。在这里,我们检查了140个高光谱(HS)图像,这些代表的五个代表,可能是毒素产生和盛开的属属微囊藻,浮游生物,浮游生物,阿法尼兹瘤,菊花菌,菊花菌和dolichospermum,以确定可见和近距离散布的潜在的(以/nirir的范围)的潜在。培养物在各种光和营养条件下生长,以诱导各种色素和光谱变异性,模仿自然环境中可能发现的变化。重要的是,我们假设了一个简化的方案,其中所有光谱变异性均来自蓝细菌。在整个蓝细菌生命周期中,获得了多个HS图像以及叶绿素A和植物蛋白酶的提取。图像,并使用K-均值算法提取来自感兴趣区域的平均光谱。使用七种方法对光谱数据进行了处理,以随后整合到随机森林模型中,其性能通过训练,验证和测试集的不同指标进行了评估。使用第一或第二个衍生物以及光谱平滑的成功分类率接近90%,并确定VIS和NIR中的重要波长。微囊孢子和Chrysosporum是达到最高精度(> 95%)的属,其次是浮游生物(79%),最后是Dolichospermum和Aphanizomenon(> 50%)。HS图像对
总共提供 12 个专用缓冲高阻抗输入(V1 至 V10、VBAT1 和 VBAT2),用于测量来自外部传感器或电阻分压器的电压,从而可以测量电池组电压、温度、HV-Link 电压、底盘隔离以及监控接触器和保险丝的状态。在某些配置下,还有另外八个缓冲高阻抗输入(V11 至 V18),总共 20 个输入。ADBMS 电池组监视器的内置串行接口可以配置为与 BMS 控制器进行 SPI 或隔离 isoSPI 通信。它有一个额外的 isoSPI 端口,允许连接菊花链式 ADBMS 电池组监视器设备,可选择使用 ADBMS6834/6836/6837 电池监视器(ADBMS 电池监视器)进行扩展。
总共提供 12 个专用缓冲高阻抗输入(V1 至 V10、VBAT1 和 VBAT2),用于测量来自外部传感器或电阻分压器的电压,从而可以测量电池组电压、温度、HV-Link 电压、底盘隔离以及监控接触器和保险丝的状态。在某些配置下,还有另外八个缓冲高阻抗输入(V11 至 V18),总共 20 个输入。ADBMS 电池组监视器的内置串行接口可以配置为与 BMS 控制器进行 SPI 或隔离 isoSPI 通信。它有一个额外的 isoSPI 端口,允许连接菊花链式 ADBMS 电池组监视器设备,可选择使用 ADBMS6840/6842/6843 电池监视器(ADBMS 电池监视器)进行扩展。