摘要癌症是一种灾难性疾病,全球死亡率显着,预计将在未来几年上升。当代治疗方式,包括化学疗法和放射疗法,包括不良反应,效力不一致,费用升高和限制可及性等限制。噬菌体已成为生物工程中的多方面仪器,在组织工程,疫苗配方和免疫疗法方面具有很大的希望。噬菌体广泛用于生物技术和医学领域,癌症治疗是最引人注目的应用。许多研究逐渐证实了基于噬菌体的载体作为癌症治疗中药用基因和药物的广泛递送机制的功效和功效。此外,噬菌体的遗传构成可以用于新型DNA疫苗和抗原表现系统的开发,因为它们提供了对免疫细胞的高度组织和重复的表现。噬菌体为癌细胞中特定分子标记的精确靶向带来了新的可能性。噬菌体可能充当抗癌药物,也可以充当成像剂和药物的车辆。本文介绍了噬菌体并分析了噬菌体和噬菌体工程在特定癌症治疗中的功效。
Owen T. Tuck, 1,2,10 Benjamin A. Adler, 2,3,10 Emily G. Armbruster, 4 Arushi Lahiri, 5 Jason J. Hu, 2,5 Julia Zhou, 5 Joe Pogliano, 4 和 Jennifer A. Doudna 1,2,3,5,6,7,8,9,11,* 1 加州大学伯克利分校化学系,美国加利福尼亚州伯克利市 94720 2 加州大学伯克利分校创新基因组学研究所,美国加利福尼亚州伯克利市 94720 3 加州大学伯克利分校加州定量生物科学研究所 (QB3),美国加利福尼亚州伯克利市 94720 4 加州大学圣地亚哥分校生物科学学院,美国加利福尼亚州拉霍亚市 92093 5 加州大学伯克利分校分子与细胞生物学系, CA 94720,美国 6 加州大学伯克利分校霍华德休斯医学研究所,美国加利福尼亚州伯克利市 94720,美国 7 劳伦斯伯克利国家实验室 MBIB 部门,美国加利福尼亚州伯克利市 94720,美国 8 加州大学旧金山分校格拉德斯通研究所,美国加利福尼亚州旧金山市 94720,美国 9 加州大学伯克利分校生物工程系,美国加利福尼亚州伯克利市 94720,美国 10 这些作者贡献相同 11 主要联系人 *通信地址:doudna@berkeley.edu https://doi.org/10.1016/j.cell.2024.09.020
▪ 捐献期间或捐献准备期间发生的严重事件(包括与为即将进行的捐献而给予患者药品的管理有关的事件); ▪ ATMP 疑似受到病毒、细菌或其他污染; ▪ ATMP 管理期间发生的严重事件(例如,在需要使用移植产品的手术或注射期间); ▪ 可能与 ATMP 或其成分(防腐剂、培养基、病毒载体等)或作为产品组成部分的医疗器械或基质的质量缺陷有关的严重事件; ▪ ATMP“不合格” (OOS) 批次的异常放行(《先进治疗药物良好生产规范指南》作为 EudraLex 第 4 卷新的第 IV 部分)。 ▪ 由转基因生物 (GMO) 组成或含有 GMO 的药品释放到环境中、传播给其他人或动物。
一个联合研究小组,由治疗药物和疫苗开发中心的KIGA TSUNETARO组成(吉吉医学院医学院传染病学系的访问教授,访问教授,吉吉医学院医学院)等,已经巧妙地阐明了一种新的机制,可以巧妙地利用TRNA来促进细菌效应。这一发现可以鼓励进一步发展噬菌体疗法,并导致实现创新疗法的多药抗性细菌,这些疗法不太可能对传统的抗生素有效。
细菌编码了多种防御噬菌体感染的系统。许多流行的抗噬菌体防御系统有一个共同的主题,即使用专门的核苷酸信号作为第二信使来激活下游效应蛋白并抑制病毒传播。在本文中,我们回顾了控制四大抗噬菌体防御系统家族中核苷酸免疫信号的分子机制:CBASS、Pycsar、Thoeris 和 III 型 CRISPR 免疫。对连接噬菌体检测、核苷酸信号合成和下游效应功能的各个步骤的分析揭示了信号传导的共同核心原理,并揭示了用于增强免疫防御的系统特定策略。我们比较了最近发现的噬菌体用来逃避核苷酸免疫信号的机制,并强调了影响宿主-病毒相互作用的趋同策略。最后,我们解释细菌抗噬菌体防御和真核抗病毒免疫之间的进化联系如何定义支配所有生命界核苷酸免疫的基本规则。
a Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom b Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham, ME7 5NY, United Kingdom c Department of Public Health, York St John University, London, United Kingdom d Department of Chemistry and Biochemistry, University of Arizona, USA e Department of Tissue Engineering and Regenerative Medicine, Faculty of Life Science工程,FH Technikum,维也纳,奥地利,f生物科学系,卫生与生命科学学院,Teesside大学,米德尔斯堡,英国G,美国亚利桑那大学系统与工业工程系,美国尼日利亚尼日利亚大学,尼日利亚纽约市纽约市纽约市纽约市纽约市纽约市纽约市校园和米德尔斯大学,米德尔斯大学,纽约市,
噬菌体 DNA 分离试剂盒产品说明书 产品编号 46800 Norgen 的噬菌体 DNA 分离试剂盒提供了一种快速方法,可从在液体培养的细菌中繁殖的噬菌体中分离和纯化总 DNA。无需使用苯酚、氯仿或氯化铯即可分离 DNA。基于旋转柱的程序速度很快,可在 45 分钟内完成。该试剂盒可高效处理少量噬菌体上清液 (1 mL)。纯化的 DNA 具有最高的完整性,可用于多种下游应用,包括南方印迹、限制性片段长度多态性 (RFLP)、测序、克隆和实时 PCR。Norgen 的纯化技术 纯化基于旋转柱层析。无需使用苯酚、氯仿或氯化铯,即可优先从其他细胞成分(如蛋白质)中纯化噬菌体 DNA。该程序的起始材料是澄清的噬菌体上清液,该上清液已从液体培养物中的细菌碎片中分离出来。首先,使用提供的裂解缓冲液 B 通过热和化学裂解过程裂解噬菌体颗粒(请参阅第 4 页的流程图)。将异丙醇添加到裂解物中,然后将溶液加载到旋转柱上。Norgen 的旋转柱以取决于离子浓度的方式结合核酸,因此只有 DNA 会与柱结合,而大多数 RNA 和蛋白质会在流过中被去除。然后用提供的洗涤溶液 A 洗涤结合的 DNA 以去除任何残留杂质,并用洗脱缓冲液 B 洗脱纯化的总 DNA。纯化的总噬菌体 DNA 具有最高的完整性,可用于许多下游应用。试剂盒组件
噬菌体 DNA 分离试剂盒产品说明书 产品编号 46800 Norgen 的噬菌体 DNA 分离试剂盒提供了一种快速方法,可从在液体培养的细菌中繁殖的噬菌体中分离和纯化总 DNA。无需使用苯酚、氯仿或氯化铯即可分离 DNA。基于旋转柱的程序速度很快,可在 45 分钟内完成。该试剂盒可高效处理少量噬菌体上清液 (1 mL)。纯化的 DNA 具有最高的完整性,可用于多种下游应用,包括南方印迹、限制性片段长度多态性 (RFLP)、测序、克隆和实时 PCR。Norgen 的纯化技术 纯化基于旋转柱层析。无需使用苯酚、氯仿或氯化铯,即可优先从其他细胞成分(如蛋白质)中纯化噬菌体 DNA。该程序的起始材料是澄清的噬菌体上清液,该上清液已从液体培养物中的细菌碎片中分离出来。首先,使用提供的裂解缓冲液 B 通过热和化学裂解过程裂解噬菌体颗粒(请参阅第 4 页的流程图)。将异丙醇添加到裂解物中,然后将溶液加载到旋转柱上。Norgen 的旋转柱以取决于离子浓度的方式结合核酸,因此只有 DNA 会与柱结合,而大多数 RNA 和蛋白质会在流过中被去除。然后用提供的洗涤溶液 A 洗涤结合的 DNA 以去除任何残留杂质,并用洗脱缓冲液 B 洗脱纯化的总 DNA。纯化的总噬菌体 DNA 具有最高的完整性,可用于许多下游应用。试剂盒组件
原核生物适应性免疫系统,CRISPR-CAS(群集定期间隔短的短滴虫重复序列;与CRISPR相关),需要靶向靶向入侵移动遗传元件(例如噬菌体)的间隔序列。先前的工作已经确定了驱动模型有机体基于CRISPR的免疫的进化的生态变量,铜绿假单胞菌PA14针对其噬菌体DMS3VIR,导致快速噬菌体灭绝。但是,尚不清楚这种获得的免疫力在细菌种群中是否以及如何稳定,以及这如何取决于环境。在这里,我们检查了30天的演化实验中CRISPR间隔者获取和损失的动态,并确定条件使免疫力长期维持之间的平衡与支持噬菌体持久性的替代抵抗策略之间的平衡。具体来说,我们发现初始噬菌体剂量和再感染频率都决定了是否长期保持获得的CRISPR免疫,并且噬菌体是否可以与细菌共存。在人口遗传学水平上,出现和CRISPR免疫的丧失与高水平的间隔多样性有关,随后由于携带菌毛相关突变的细菌的侵袭而下降。在一起,这些结果提供了CRISPR免疫获取和损失动态的高分辨率,并证明累积噬菌体负担决定了CRISPR对生态相关时间表的有效性。
1 西澳大利亚大学健康与医学科学学院生物医学科学学院感染与免疫学部,西澳大利亚州内德兰兹,澳大利亚,2 西澳大利亚大学儿童研究所澳大利亚沃尔-扬呼吸研究中心,西澳大利亚州内德兰兹,澳大利亚,3 科廷大学人口健康学院,西澳大利亚州本特利,4 西澳大利亚大学马歇尔中心生物医学科学学院感染与免疫学部,西澳大利亚州珀斯,澳大利亚,5 珀斯儿童医院呼吸与睡眠医学系,西澳大利亚州内德兰兹,澳大利亚,6 西澳大利亚大学医学与药理学学院细胞治疗与再生医学中心和哈里·珀金斯医学研究所,西澳大利亚州内德兰兹