摘要。背景/目的:伊维菌素最初用作兽药,对各种寄生虫均有疗效。胰腺癌是目前最难治愈的疾病之一。本研究旨在证明重组蛋氨酸酶 (rMETase) 和伊维菌素的组合在体外消灭人胰腺癌细胞方面的协同作用。材料和方法:在添加了 10% 胎牛血清和 1 IU/ml 青霉素/链霉素的杜氏改良伊格尔培养基 (DMEM) 中培养 MiaPaCa-2 人胰腺癌细胞。使用 WST 试剂测定 rMETase 单独使用、伊维菌素单独使用及其组合对 MiaPaCa-2 细胞活力的降低。体外检查了四个实验组:未治疗的对照组;伊维菌素单独使用;rMETase 单独使用;伊维菌素与 rMETase 联合使用。结果:伊维菌素对MiaPaCa-2细胞的IC 50为5.9μM,rMETase对MiaPaCa-2细胞的IC 50为2.93U/ml,伊维菌素(5.9μM)加rMETase(2.93U/ml)可显著降低MiaPaCa-2细胞的存活率,
摘要:多药(MDR)超级细菌可以破坏血脑屏障(BBB),从而导致促炎性调节剂的连续弹药,并诱导严重感染相关的病理学,包括脑膜炎和脑脓肿。宽光谱或物种特异性抗毒剂(β-乳糖酶抑制剂,多黏膜蛋白,万古霉素,Meropenem,Plazomicin和Sarecomicin和Sarecycline)和生物相容性多(乳酸 - 糖 - 甘油酸)(Plga)纳米酸(Pla)纳米纳波特菌株已被用来处理这些迷雾。但是,需要具有广泛影响的新的治疗平台,不需要发挥脱靶的有害影响。膜囊泡或细胞外囊泡(EV)是脂质双层封闭的颗粒,由于其绕过BBB约束的能力,具有治疗潜力。来自肠道菌群的细菌衍生的电动汽车(BEV)是有效的转运蛋白,可以穿透中枢神经系统。实际上,可以通过表面修饰和CRISPR/CAS编辑来重塑BEV,因此代表了一个新的平台,用于赋予防止违反BBB的感染的保护。在这里,我们讨论了与肠道菌群和益生菌衍生的BEV有关的最新科学研究,以及它们的治疗方法,以调节神经递质和抑制Quorum感应性,以治疗诸如parkinson's and parkinson's和alzheimerseseasesessesess,以抑制Quorum sensiss。我们还强调了益生菌衍生的BEV对人类健康的好处,并提出了开发创新异源表达系统来打击BBB跨性病原体的新方向。
Javier Gandasegui 博士、Chukwuemeka Onwuchekwa 医学博士、Alejandro J. Krolewiecki 医学博士、Stephen R. Doyle 博士、Rachel L. Pullan 博士、Wendemagegn Enbiale 医学博士、Stella Kepha 博士、Hollie Ann Hatherell 博士、Lisette van Lieshout 博士、María Cambra-Pelle、MSc Jozla 医学博士、Jozla Vallejo 医学博士。
乳酸菌 (LAB) 是发酵牛奶所必需的,它能产生一系列抗菌化合物,尤其是细菌素,有助于延长乳制品的保质期。细菌素是核糖体合成的肽,具有广谱或窄谱抗菌活性,因此在食品保鲜方面很有前景。LAB 细菌素的分类很复杂,反映了不断发展的基因组学见解和生物合成机制。将细菌素整合到乳制品中的策略包括纯化形式、产生细菌素的 LAB 和含细菌素的发酵物,每种策略都有不同的优势和注意事项。优化发酵条件(包括时间、温度、pH 值和培养基)对于最大限度地提高细菌素产量至关重要。这种优化有助于提高发酵乳制品的质量和安全性,符合消费者对天然、加工程度最低的食品日益增长的偏好。此外,将细菌素与热处理和非热处理结合到隔离方法中有望增强食品的生物保护,同时减少对化学防腐剂的依赖。本综述强调了乳酸菌素作为传统食品防腐剂的天然有效替代品的潜力,并提供了其在乳制品保存中的应用和优化见解。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2024年9月3日。 https://doi.org/10.1101/2024.09.09.03.609457 doi:Biorxiv Preprint
在盘尾丝虫病、土壤传播蠕虫、淋巴丝虫病地理重叠的地区,通过联合使用伊维菌素、阿苯达唑和阿奇霉素 MDA 干预措施,采用联合 MDA 策略可以节省时间和资源
摘要:有效的药物输送仍然是治疗神经退行性疾病的关键挑战,例如阿尔茨海默氏病(AD)。使用创新的纳米材料,将当前的药物(如乙酰胆碱酯酶抑制剂)通过鼻内途径传递到大脑,是管理AD的有希望的策略。在这里,我们开发了一种基于N,N,N-三甲基壳聚糖纳米颗粒(NPS)的独特组合药物输送系统。这些NP囊括了iVastigmine,这是最有效的乙酰胆碱酯酶抑制剂,以及胰岛素,一种互补的治疗剂。球形NP的ZETA电位为17.6 mV,大小为187.00 nm,多分散指数(PDI)为0.29。与药物溶液相比,我们的发现表明,使用NPS使用NPS可以显着提高通过绵羊鼻粘膜的药物运输效率。NP的私生菜疗法的运输效率为73.3%,胰岛素的运输效率为96.9%,超过了药物溶液的效率,该药物溶液的效率表现出52%的Rivastigine的运输效率,而胰岛素EX VIVO的运输效率为21%。这些结果突出了新药输送系统的潜力,是提高鼻运输效率的有前途的方法。这些组合性粘膜NPS为脑脊液和胰岛素同时递送提供了一种新的策略,这可能证明有助于开发AD和其他神经退行性疾病的有效治疗。
寄生线虫对人类和动物的健康构成了重大威胁,并在农业部门造成经济损失。使用驱虫药物(例如伊维菌素(IVM))来控制这些寄生虫的使用导致了广泛的耐药性。识别寄生线虫中抗药性的遗传标记可能具有挑战性,但是秀丽隐杆线虫的自由生活的Nema-Tode Caenorhabditis提供了合适的模型。在这项研究中,我们旨在分析成人c的转录组。秀丽隐杆线虫蠕虫暴露于驱虫药伊维菌素(IVM)的N2菌株,并将其与抗性菌株DA1316和最近确定的杀伤蛋白定量性状基因座(QTL)进行比较。 RNA并在Illumina NovaseQ6000平台上对其进行了排序。使用内部管道确定差异表达的基因(DEG)。将DEG与先前关于IVM抗性c的微阵列研究的基因进行了比较。秀丽隐杆线虫和Abamectin-QTL。我们的结果显示,N2 c中不同基因家族的615摄氏度(183个上调和432个下调基因)。秀丽隐杆线伤。31与DA1316菌株的IVM成年蠕虫的基因重叠。我们确定了19个基因,包括叶酸转运蛋白(Folt-2)和跨膜转运蛋白(T22F3。11),在N2和DA1316菌株中表现出相反的表达,被认为是潜在的候选物。此外,我们编制了进一步研究的潜在候选列表,包括T型钙通道(CCA-1),氯化钾共转运蛋白(KCC-2),以及其他映射到Abamectin-QTL的基因,例如谷氨酸门控通道(GLC-1)。
伊维菌素是一种带有16元环的大花环抗寄生虫药物,可广泛用于治疗许多寄生虫病,例如河流盲,象象和sc虫。satoshi'Omura和William C. Campbell赢得了2015年诺贝尔生理学或医学奖,因为它发现了伊维菌素对寄生疾病的出色效力。最近,据报道,伊维菌素通过调节多种信号通路来抑制几个肿瘤细胞的增殖。这表明伊维菌素可能是具有巨大潜力的抗癌药物。在这里,我们审查了伊维菌素抑制不同癌症的发展并促进程序性细胞死亡的相关机制,并讨论了伊维菌素作为肿瘤治疗的抗癌药物的临床应用的前景。
肠球菌可产生具有抗菌活性的细菌素,但尚未对肠球菌菌株中的细菌素分布进行全面的分析。本研究对80株粪肠球菌和38株屎肠球菌进行了细菌素基因鉴定,并研究了它们的抗菌活性。80株粪肠球菌中鉴定出细胞溶素基因(61.3%)、肠溶素A基因(27.5%)和BacL 1基因(45.0%)。38株屎肠球菌中鉴定出肠素A基因(97.4%)、肠素B基因(2.6%)、肠素NKR-5-3B基因(21.0%)、细菌素T8基因(36.8%)和BacAS9基因(23.7%)。对所有菌株进行了针对粪肠球菌和屎肠球菌的抗菌活性测试。溶细胞素、肠溶素 A、BacL 1 、细菌素 T8 或 BacAS9 基因阳性的菌株表现出不同的抗菌活性。几种细菌素阳性菌株对其他肠球菌种表现出抗菌活性,但对葡萄球菌或大肠杆菌没有抗菌活性。此外,肠溶素 A 阳性菌株对耐万古霉素的屎肠球菌表现出抗菌活性,而细菌素 T8 或 BacAS9 阳性菌株对耐万古霉素的粪肠球菌和屎肠球菌表现出活性。我们的研究结果表明携带不同细菌素基因的屎肠球菌和屎肠球菌菌株可能会影响周围细菌群落的组成。