亚历山大·弗莱明发现青霉素。(A)金黄色葡萄球菌菌落生长良好,位于培养皿的这一区域。(B)由于青霉菌(一种霉菌)菌落(如图C所示)产生抗生素(青霉素),菌落发育不良。
用于筛选微生物,最简单的技术是“拥挤的板”程序。使用此技术,只有人们只想找到产生抗生素的微生物,而与任何特定生物的作用无关。因此,样品仅在这些稀释液中制备的琼脂平板将是琼脂表面上的单个菌落的人群,即300至400个殖民地或更多。产生抗菌活性的菌落用周围的菌落生长抑制的明确区域表示。这种菌落后来在亚培养,纯化和后来的微生物抑制光谱上进行选择性微生物测试。此外,该技术用于隔离生长因子产生细菌。
抽象的 。合成培养基是一种可用于微生物繁殖的培养基。使用合成介质的缺点是材料价格相当昂贵。为了降低使用成本,您可以寻找使用天然材料的替代品。青豆和大豆可以作为培养微生物的替代培养基。本研究的目的是计数绿豆和大豆提取物等天然培养基中的枯草芽孢杆菌菌落数量。该研究方法是通过将枯草芽孢杆菌培养到绿豆和大豆提取物培养基中,然后使用菌落总数 (TPC) 法计算生长的菌落数量来进行实验的。研究结果表明,枯草芽孢杆菌能在绿豆提取物培养基中生长,菌落数为1.7×10 10 CFU/mL,而在大豆提取物培养基中则有4.5×10 8 CFU/mL菌落数。从两种替代培养基中获得的菌落结果显示,枯草芽孢杆菌可以在绿豆和大豆提取物培养基中生长。关键词:枯草芽孢杆菌、天然培养基、绿豆提取物、大豆提取物、TPC。
Hicrome™通用差异介质是根据Pezzlo(1),Wilkie等人(2),Friedman等人(3),Murray等人(4),Soriano和Ponte(5)和Ponte(5)和Merlino等(6)进行的作品的修饰。Hicrome™通用差异培养基,以鉴定来自临床和非临床标本的微生物,其中该培养基具有更广泛的应用作为一般营养琼脂,用于隔离各种微生物。这种培养基有助于鉴定一些革兰氏阳性细菌和革兰氏阴性细菌,基于它们所表现出的不同菌落颜色。这些颜色是由于属或物种特异性酶与培养基中掺入的两个发色底物的反应而形成的。肠球菌,大肠杆菌和大肠菌群产生酶,这些酶特异性地切割了这些发色底物,从而具有特征性的独特菌落颜色。蛋白质是苯丙氨酸和色氨酸等氨基酸的来源,这些氨基酸有助于指示色氨酸脱氨酶活性,从而促进了蛋白质物种,摩根菌和普罗维伦西亚物种的鉴定。通过肠球菌拥有的β-葡萄糖苷酶裂解了一种成色的底物,从而形成了蓝色的绿色菌落。大肠杆菌具有酶ß-半乳糖苷酶,该酶特异性切割了其他发色底物,从而形成了紫色的菌落。大肠杆菌可以通过进行吲哚测试来区分和与其他类似的颜色菌落进行区分。大肠菌群裂解了形成蓝色至紫色菌落的两个成色基底物。由于色氨酸脱氨酶活性,Proteus,Morganella和Providencia物种的菌落显得棕色。肽和胰蛋白蛋白酶提供氮,碳质化合物,必需的生长营养素,还可以作为氨基酸的来源。
本文是对生命评论物理学的第一个20年中发表的最引用的文章之一的后续行动。特定的主题是“蚂蚁菌落优化”,它是解决挑战性优化问题的元疗法。由于自然蚂蚁菌落最短的路径发现行为的灵感,该优化技术构成了一个被称为群智能的较大领域的一部分。在对蚂蚁菌落优化的简短介绍之后,我们首先提供了针对算法发展而不是应用的年代。本文的主要部分介绍了对蚂蚁菌落优化文献的书目计量研究。关于有关出版物的地理起源以及随着时间的推移的研究重点的有趣趋势,可以从提出的图形和数字中学到。
原始淀粉降解淀粉酶(RSDA)是一种酶,具有在不经历胶质化的情况下降解淀粉颗粒中的葡萄糖的能力。进行了这项研究,以探索和表征来自萨马林达卡朗穆斯河体水的细胞外RSDA产生细菌。在含有1%淀粉颗粒的养分琼脂中对RSDA活性进行了定性分析,在板块充满碘溶液后,具有RSDA活性的细菌菌落是细菌菌落周围细菌菌落周围的清晰光晕。14个细菌菌落中的5个细胞外分泌RSDA。使用二硝基水杨酸(DNS)方法测试了5种细菌的RSDA酶的淀粉酶活性。具有菌落代码KM 5的细菌的RSDA活性为0.332 U/ml。RSDA的最佳工作条件在pH 5和温度为40°C。使用16S rRNA基因鉴定细菌基因型,表明KM5是克雷伯氏菌SP,称为Klebsiella km5。
该方法涉及对原始样品进行连续稀释,从而使微生物种群密度显著降低。然后将最稀释的样品与温琼脂混合,倒入培养皿中。分离的微生物长成菌落,并用于建立纯培养物(图 6.4)。在表面生长的菌落呈圆形,而在表面下生长的菌落呈透镜状。因此,由于一个微生物形成一个菌落,因此该技术会计数表面以及固体培养基中的 CFU(菌落形成单位)总数。活菌平板计数为科学家提供了一种标准化方法来生成生长曲线、计算样品接种管中的细胞浓度以及研究各种环境或生长条件对细菌细胞存活率或生长率的影响。
摘要。细胞移植学的最重要任务是在从供体接收骨髓细胞之前激活间充质干细胞(MSC)的增殖潜力。当染色体突变的概率仍然很低时,这对于增加足够数量的MSC是必不可少的。可以通过暴露于可见的和近红外范围中的低强度激光辐射来使用光生物调节(PBM)激活细胞的增殖活性。最近,在体外表明,PBM和中等激光诱导的加热的组合可导致MSC集落形成的效率显着提高。该研究的主要目标是找到这种综合效果的最佳参数,并回答有关热加热和激光辐射有协同作用的可能性的问题。MSC用于实验。MSC暴露于中等功率的短期激光辐射,波长为980 nm,能量密度为68-340 J/cm 2,并伴有细胞悬浮液的中等加热。拍摄了带有生长菌落的小瓶,然后使用特殊的数字图像处理方法确定了单个菌落中的细胞数量,大小和单个菌落数。发现,在最佳参数下,暴露于中等功率的激光辐射会导致菌落数量增加4.1±0.5倍,而与对照相比,细胞总数增加了3.3±0.4倍。已经表明,由于光生物调节和中等加热的协同作用,细胞数的增加发生。激光刺激MSC后菌落形成的激活是由于细胞从最初形成的菌落迁移而迁移,随后通过分离的细胞迁移了其他菌落。
抽象的白介素6(IL-6,也称为B细胞刺激因子2/干扰素P2)支持粒细胞/巨噬细胞祖体的增殖,并间接支持来自正常小鼠斑球细胞培养的多梯性和胚细胞菌落的形成。我们在这里报告说,IL-3和IL-6协同作用是为了支持培养中鼠多重祖细胞的扩散。在注射5-氟尿嘧啶(150 mg/kg)后4天从小鼠中分离出的脾细胞的总菌落形成时间,在包含这两种淋巴细胞的培养物中相对于由两个因素支持的两种培养物的培养物显着缩短。培养中单个爆炸细胞集菌落的序列观测(映射)表明,在IL-3存在下随机时间间隔后出现了爆炸细胞菌落。单独使用IL-6中的平均外观时间有些延迟,在包含这两个因素的培养物中,相对于在单个淋巴因子的存在下,相对于在存在的培养物中,多曲线爆炸细胞菌落的出现显着加速。在第2天的培养物中-5-氟尿嘧啶骨髓细胞中,IL-6无法支持菌落形成;仅IL-3支持形成一些粒细胞/宏观噬菌体菌落,但是因素的组合起作用协同作用,以产生多曲线和各种其他类型的菌落。在该系统中,IL-LA也与IL-3协同作用,但效果较小,没有看到多片菌落。共同这些结果表明,IL-3和IL-6协同作用以支持造血祖细胞的扩散,并且至少部分效应是由于单个干细胞的GO时期下降而导致的。