绿贻贝是双壳类软体动物,可通过盐发酵保存以提高其品质。本研究旨在使用响应曲面法 (RSM) 和 D 最优设计优化绿贻贝的发酵工艺。变量包括盐浓度(5-30%)和发酵期(1-4 周)。RSM 共产生了 16 种盐浓度和发酵期的组合条件。响应包括 pH、菌落总数 (TPC) 和总体可接受性。根据结果,发酵绿贻贝的优化条件为 15.05% 盐浓度和 2.6 周发酵期。可取性值为 0.733。最佳条件的 pH 值为 4.71,菌落总数为 3.63 log CFU/g,总体可接受性得分为 8.99。总体而言,本研究结果可应用于生产高品质盐发酵绿贻贝的工艺标准化。建议进一步研究发酵产品中的细菌鉴定和延长发酵时间。
bordetella trematum B. trematum细胞通过腹膜鞭毛流动。运动性不会显着差异。在血琼脂上的16-24小时培养物中,平均细胞宽0.5至0.6µm,长1至1.8µm;最长的杆长高2.4μm。它们产生凸,圆形和灰色的奶油白色菌落,并在血琼脂上整个边缘。他们不需要特殊的增长因素,并在常规媒体上增长。在42°C的孵育温度下不抑制生长,但在25°C下显着降低。菌株在微探针上生长,但不会厌氧。在37°C下在透明的诊断灵敏度测试琼脂上生长的菌落16至24小时在立体显微镜下倾斜地传播的光中表现出绿色的黄色至黄红色虹彩13。
脱水培养基 1-预期用途 用于牛奶和奶制品中的微生物平板计数。 2-成分 *典型配方(用 1 升水溶解后) 胰蛋白胨 5.0 g 酵母提取物 2.5 g 葡萄糖 1.0 g 脱脂牛奶 1.0 g 琼脂 15.0 g *配方可能会进行调整和/或补充,以满足所需的性能标准。 3-方法原理和程序说明 ISO 标准 1-3 建议使用补充有脱脂牛奶的平板计数琼脂来计数牛奶和奶制品中的中温或嗜冷微生物。该测试基于以下假设:每个活细胞、细胞对或小细胞簇与生长培养基混合后会形成一个可见的菌落,称为菌落形成单位 (CFU)。 4 微生物计数需要稀释样品,以达到所选方法可计数的菌群。目前已描述了几种可用于需氧菌落计数的技术:倾倒平板法、表面平板法、膜过滤法、螺旋板法、校准环法、滴板法。4 选择最合适的方法必须考虑监管机构的要求、要分析的样品类型、预期的微生物和污染程度。国际标准 ISO 4833-1 规定了一种用于中温菌落计数的倾倒平板法,适用于在规定了检测下限时需要可靠计数的产品或预期含有扩散菌落的产品。1 ISO 4833-2 规定了一种适用于含有热敏性微生物或专性需氧菌的产品的表面平板法。2 ISO 17410 描述了一种用于在 6.5°C 下培养的嗜冷菌落计数的表面平板法。 3 含脱脂牛奶的平板计数琼脂的配方符合 ISO 标准。1-3 胰蛋白胨为微生物生长提供氮、碳、矿物质和氨基酸。酵母提取物是维生素的来源,尤其是 B 族维生素。葡萄糖是碳和能量的来源。配方中包含的脱脂牛奶经测试不含抗生素。4 - 脱水培养基的使用方法 将 24.5 g 悬浮在 1000 mL 冷纯净水中。加热至沸腾并频繁搅拌以完全溶解,然后在 121°C 下高压灭菌 15 分钟。冷却至 47-50°C,充分混合并分配到无菌培养皿中。 5 - 物理特性 脱水培养基外观 米色、细腻、均匀、自由流动的粉末 溶液和制备培养基外观 淡米色、透明或略带乳白色 20-25 °C 时的最终 pH 值 7.0 ± 0.2 6 - 提供的材料 - 包装
抽象背景:唾液分泌具有昼夜波动,唾液量会影响口腔细菌活性。在这项研究中,研究了唾液中厌氧菌数量的时间依赖性,例如链球菌突变(S. mutans),并检查了其对龋齿严重程度的影响。方法:这项研究是在日本大学医院进行的。二十个受试者(2-10岁),主要牙齿被要求在醒着在家中醒来后每1小时收集整个唾液。十八名受试者分别在胰蛋白种链球菌培养了收集的唾液,分别为胰蛋白种链球菌和总厌氧菌培养了胰蛋白酶酵母提取物 - 半胱氨酸蔗糖 - 巴西特拉蛋白(TYCSB)培养基和GIFU厌氧培养基(GAM)。还从病历中分析了严重的龋齿数量。结果:在GAM培养基中的菌落数量与一天中的唾液收集时间之间存在正相关。在TYCSB培养基中的菌落数量与收集时间之间没有明显的相关性。根据是否经历了纸浆治疗,将患者分组。仅在经验丰富的组中,在后来的几个小时内增加了葡萄糖和厌氧菌的菌落数量。结论:晚餐到睡前晚餐后,儿童口腔厌氧细菌的数量以时间依赖的方式波动,并在深夜较高。患有严重牙齿龋齿的儿童随着夜晚的发展而增加了叛变。
一旦 Cas9/sgRNA RNP 复合物通过囊泡递送并恢复细胞,就必须分离单细胞并将其扩增成克隆细胞系,以便分离和筛选目标基因型(图 3)。传统上,从作为菌落生长和传代的 hiPS 细胞建立克隆群效率低、困难且耗时;通常会导致细胞死亡或过早分化。然而,Cellartis iPSC CRISPR/Cas9 囊泡和单细胞克隆系统的细胞培养组件包含一个确定的培养系统(Cellartis DEF-CS™ 培养系统,由基础培养基、涂层和添加剂组成),可有效进行单细胞克隆和扩增编辑的 hiPSC 克隆。 DEF-CS 培养系统是一种基于单层的培养系统,它通过允许单细胞传代、促进接种单细胞的存活和进一步扩增以及保留这些细胞的多能性,克服了基于菌落的培养所面临的挑战。
由于气候变化和富营养化,主要有毒的淡水蓝细菌的花朵正在加剧,并且很可能会定居河口,从而影响底栖生物和养殖养殖,重强调主要的生态,健康,健康,健康和经济风险。在自然环境中,微囊藻形成大型粘液菌落,会影响蓝细菌和嵌入细菌洞穴的发展。然而,盐度增加对微囊藻的天然菌落的命运知之甚少。在这项研究中,我们监测了一个微囊藻的命运,沿法国淡水盐梯度沿着鲜花的不同阶段沿着法国淡水盐梯度沿着微生物组的命运。我们证明了蓝细菌基因型组成的变化,在特定代谢产物(毒素和兼容溶质)的产生中以及响应盐度升高的异育细菌结构的变化。尤其是M.铜绿和Wesenbergii M.基于微囊蛋白基因丰度,蓝细菌在其河口转移期间变得更具毒性,但没有选择特定的微囊蛋白变体。沿连续体发生了兼容溶质的增加,海藻糖和甜菜碱积累。盐度大多是异养细菌群落,沿着连续体的丰富性和多样性增加。与粘液相关的相关分数中的核心微生物组高度丰富,表明微囊肿及其微生物组之间存在很强的相互作用,并且可能保护粘膜对渗透冲击的作用。这些结果强调了更好地确定微囊菌落与它们的微生物组之间的相互作用,这可能是其广泛成功并适应各种环境条件的关键。
一项从2021年12月至2022年6月在埃塞俄比亚进行的横断面研究,调查了西舍瓦(Holeta)霍塔镇霍尼比镇(Honeybee Colonies)的大肠杆菌和肠道肠道肠道大肠杆菌的流行。在使用细菌学培养物,生化和PCR测试分析的200个蜜蜂样品中,有15个(7.5%)的大肠杆菌为阳性,而肠链球菌为11(5.5%)。此外,针对INVA基因的PCR在10个样品中检测到肠链球菌(5%)。值得注意的是,与现代菌落相比,传统蜂巢的病原体发生率更高。均未显示出毒力基因的大肠杆菌分离株。该研究发现沙门氏菌分离与饲料补充剂,水类型和菌落塌陷等因素之间存在显着关联(P <0.05)。抗菌敏感性测试表明,所有大肠杆菌和63.6%的肠分离株均对氨苄青霉素,克林霉素和青霉素抗性。相反,所有大肠杆菌分离株易受链霉素的影响,而链霉素(100%)和甲氧苄林(63.6%)均显示出针对肠链球菌的有效性。调查结果表明,管理实践在蜜蜂健康和病原体污染中起着至关重要的作用。建议实施现代蜂箱并采用良好的管理实践,包括检查,喂养,卫生和疾病控制,以减轻病原体对研究区域中蜜蜂菌落的影响。关键字:大肠杆菌;蜜蜂殖民地; nva基因; pcr;沙门氏菌
1。预期的用途检测和分离革兰氏阴性肠病原体,尤其是人类临床标本和其他标本中的志贺氏菌和沙门氏菌。革兰氏阴性肠病原体(尤其是志贺氏菌和沙门氏菌)的Shalmella shigella琼脂/XLD琼脂。沙门氏菌琼脂/XLD琼脂的功能是支持症状患者的诊断,表明革兰氏阴性肠病原体,尤其是Shigella属和沙门氏菌的病原体潜在感染。沙门氏菌是食物中毒的一些最常见的病因。这些微生物的致病性从一种血清变化到另一种血清,并且在同一亚种中可能会有所不同。一些血清造成了侵入性疾病,但也有一些造成自限性食物中毒的血清疾病。沙门氏菌肠subsp的最孤立的血清。肠道是S. enteritidis,S。Typhimurium,S。Virchow,S。Hadar或S. iftantis。Shigella属包括四种:S。dysenteriae,s。Flexneri,S。Boydii和S. Sonnei。所有物种都是强制性的病原体,并引起细菌痢疾。2。手术沙门氏菌琼脂的原理胆汁盐,孔雀石绿色和柠檬酸钠的存在抑制了除沙门氏菌和志贺氏菌以外的革兰氏阳性微生物和肠杆菌的生长。由于添加乳糖,肠杆菌的分化是可能的。乳糖发酵细菌会产生酸并形成红色菌落,这是由于中性红色的pH指示剂。相反,乳糖非发酵微生物形成无色菌落。柠檬酸铁是硫化氢产生的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合,形成H 2 S,与柠檬酸铵反应。这种反应导致形成沉淀物,可见在细菌菌落中心的黑点。XLD琼脂酵母提取物是培养基中养分的来源。脱氧胆酸钠的存在抑制了革兰氏阳性细菌的生长。由于三个指示系统,细菌的分化是可能的: - 乳糖,木糖和蔗糖与苯酚红(这是pH指示剂) - - 盐酸l-赖氨酸盐和苯酚红色, - 硫代硫酸钠和柠檬酸铁硫酸盐。木糖的发酵降低了培养基的pH值,并使其从红色变为黄色。包括沙门氏菌在内的大多数肠道病原体能够发酵木糖,从而导致培养基的酸化。由于志贺氏菌的细菌是乳糖的非发酵,因此不会产生酸,因此会形成红色菌落。赖氨酸允许将沙门氏菌细菌与其他非致病细菌区分开。一旦木糖耗尽,沙门氏菌细菌在脱羧过程中利用L-赖氨酸,这将培养基的pH水平改变为碱。为防止赖氨酸阳性大肠菌群,乳糖和蔗糖的类似pH水平的类似回归,以产生多余的酸。氯化钠保持渗透平衡。柠檬酸铵是硫化氢生产的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合形成H 2 s,与柠檬酸铁反应形成沉淀物,可见在细菌菌落中的黑色中心。产生H 2 S的非致病细菌不脱羧L-赖氨酸。因此,它们产生的酸反应阻止了菌落的变化。
摘要细菌生长培养基的高成本可能导致在微生物学领域的实践或研究过程中遇到障碍。日期棕榈(Phoenix dactylifera L.)是在阿拉伯半岛,北非和中东生长的最古老的水果植物。日期是高能量食品的来源,糖含量为72%-88%。进行了这项研究,以测试枣棕榈粉种植大肠杆菌和蜡状细菌作为替代Na培养基的替代培养基的能力。在这项研究中,使用浓度为1 g,2 g,4 g,6 g,8 g的方法实验室,带有三个重复。这项研究的结果是,大肠杆菌细菌的菌落数量超过了蜡状芽孢杆菌的菌落数量,即浓度介质8 gr上的54 x 10 5 cfu/g。与NA培养基相比,日期棕榈粉介质可以用作细菌的廉价替代培养基。关键字:蜡状芽孢杆菌,大肠杆菌,替代媒体,日期
伯克霍尔德菌琼脂以 PC 培养基为基础,该培养基最初由 Gilligan 发明。研究发现,这种培养基比麦康凯琼脂更适合伯克霍尔德菌的生长。培养基中的酪蛋白糖和酵母提取物提供碳、氮、长链氨基酸、维生素 B 源和其他必需营养素。结晶紫和抗菌剂用作选择剂。结晶紫和万古霉素可抑制革兰氏阳性球菌,包括肠球菌和葡萄球菌。多粘菌素 B 和庆大霉素等抗生素可抑制革兰氏阴性细菌。伯克霍尔德菌代谢丙酮酸形成碱性终产物。蔗糖和乳糖是可发酵碳水化合物。酚红指示剂在碱性 pH 下从粉橙色变为粉红色。如果出现带有黄色晕圈的绿褐色菌落或被粉红色区域包围的白色菌落,则可能存在伯克霍尔德菌。