摘要:用湿过程将粗菜蛋糕用作制备基于蛋白质的生物塑性薄膜的起始材料。农业废物在40℃下实现的甲酸的简单暴露15分钟,可以有助于浆液,可以通过在没有其他增塑剂添加的情况下铸造出来生产可靠的生物塑料胶片。确定最佳过程条件后,所有薄膜和膜均通过DSC和FT-IR光谱依次表征。还测试了他们的吸水能力,拉伸强度和休息性能时的伸长率。通过Fe-Sem/EDX确定产物的各自的表面形态和基本组成。通过将氧化石墨烯加载到生物聚合物三维基质中来进行一些改善其内在特性的尝试。
为了满足这些营养需求,生产者经常使用尿素和硫酸铵 (AMS) 的物理混合物。虽然物理混合物可能具有施肥者所需的营养量,但一旦撒在田地里,可能会导致营养条纹不均匀。另一种选择可能是均质混合物,包括大分子和次要营养元素,例如氮 (N)、钾 (K) 和硫酸盐-硫 (SO4-S),其中含有适合大多数土壤的最佳数量的这些营养元素。目标考虑到油菜籽与大多数作物相比具有较高的营养需求,2024 年在朗登研究推广中心进行了一项肥料试验。该试验由 UKT 芝加哥赞助。试验的目的是比较两种均质新肥料 NKS(28-0-5-6SO4-S)和 NKS(26-0-7-9SO4-S)与尿素和 AMS 等直接肥料的效果。新型肥料中的氮以铵 (NH4 + ) 和硝酸盐 (NO3 - ) 形式存在,因此与尿素不同,它们不会因氨挥发而损失。该研究采用了三种不同比率的氮、钾和硫酸盐-硫 (SO4-S),并测量了油菜籽的产量和质量。根据土壤有效磷的结果,所有处理统一施用磷。试验地点试验地点位于北达科他州兰登的 NDSU 兰登研究推广中心。处理和重复根据土壤分析结果,所有处理都采用了全比率的磷,即每英亩 72 磅,而采用尿素和 AMS 组合的直接施肥处理(T2、T3 和 T4)没有采用任何钾。但是,这些处理确实采用了等量的氮和等量或接近量的 SO4-S。由于均质肥料 NKS 28 和 NKS 26 中含有钾,因此 T5 至 T10 处理除了氮、磷和 SO4-S 外还添加了钾。此外,在 T2 至 T4 处理中,尿素以 14 毫升/10 磅的比例用脲酶抑制剂处理,所有肥料均以表面撒播的方式施用。肥料和养分类型及数量的详细信息见表 1。
在 135 个独特分析中比较了每个种子质量性状的预测准确度,评估了对 GS 模型(九个回归模型)、群体(五个模型训练/验证群体设计)和标记密度(三个包含低、中和高密度的标记集)的响应。预测准确度(以预测和实际表型之间的相关性表示)范围从 0.023(总油含量)到 0.897(亚油酸含量)。预测准确度与性状复杂性呈负相关,与训练/验证群体相关程度呈正相关,标记密度或参数模型之间没有显着差异。机器学习模型的表现与普通参数模型相当或更差。总油含量是所分析的最复杂的性状,当改变上述因素时,准确度提高高达 0.745。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
在过去的几十年中,源自植物种子的基于蔬菜的绝缘液体已成为一种在传统基于石油的矿物质绝缘油的环境友好替代品。这些植物油在高压绝缘层表现出极好的特征,包括显着的高温稳定性,在其闪光和火点中也很明显。此外,它们的高吸水能力可以保护变压器内部绝缘材料的完整性。但是,由于它们对氧化的敏感性,它们的实际应用仅限于密封的变压器。此外,由于在寒冷条件下的流量差,因此在低温区域中使用这些油提出了挑战。的低芥酸菜籽油,源自低芥酸菜籽油,提供了一组平衡的特性,尤其是关于倒数和氧化稳定性的,归因于其独特的脂肪酸组成。这项研究深入审查了可应用于低芥酸菜籽油的潜力,前景和可能的增强。包括重要的教程元素以及一些分析。的目的是揭示低芥酸菜籽油的深度属性,作为一种适合自由呼吸和密封的变压器的合适的绝缘液体,同时也确保它是在极冷环境中运行的变压器的有效冷却介质。所检查的许多属性,本综述特别关注氧化稳定性和油的流量特征。
图 1 植物中脂肪酸和三酰甘油合成途径的示意图。虚线显示三酰甘油合成中脂肪酸的流动。ACC,乙酰辅酶 A 羧化酶;ACP,酰基载体蛋白;CoA,辅酶 A;DGAT,二酰甘油酰基转移酶;FAB2,脂肪酸生物合成 2;FAD2,脂肪酸去饱和酶 2;FAD3,脂肪酸去饱和酶 3;FAE1,脂肪酸延长酶 1;FATA,脂肪酰基-ACP 硫酯酶 A;FATB,脂肪酰基-ACP 硫酯酶 B;KAS,β-酮酰基-酰基载体蛋白合酶;LMAT,丙二酰辅酶 A/ACP;PC,磷脂酰胆碱; PDCT,磷脂酰胆碱:二酰甘油胆碱磷酸转移酶。
Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J. (2022)。 使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。 制造科学与工程杂志,144(091012)。 https://doi.org/10.1115/1.4055048Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J.(2022)。使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。制造科学与工程杂志,144(091012)。https://doi.org/10.1115/1.4055048
油菜籽不仅可以提供大量具有高营养价值的食用油,还可以用作许多行业生产生物燃料的原料。因此,为了满足人类和工业的需求,迫切需要进行基因改变。尽管杂交和诱变等传统育种技术长期以来仍然是培育油菜良种的主要方法,但成簇的规律间隔短回文重复序列 (CRISPR) 正在成为最有价值的基因编辑技术之一,它可以实现精确的基因组工程,并为植物功能基因组学的研究开辟新的途径。虽然 CRISPR 已用于许多其他作物的遗传改良,但它有望成为油菜籽油改良的基因组编辑和分子设计的有效工具。这篇小型评论将讨论和总结过去和正在进行的使用 CRISPR 技术在油菜籽油改良和脂肪酸组成方面的研究和开发。此外,本文还将简要总结阻碍该工具效率的因素以及如何消除这些因素。本文还将考虑改进 CRISPR 技术以在油菜中获得更好的结果。这篇小综述将为使用 CRISPR 技术进行油菜油改良研究和遗传改良的研究人员打开新的窗口。