我们对化学和相关的电子结构进行了全面分析 - 菱形Cr x 3(x = br,cl,i)van der waals散装晶体的构造。使用广义梯度近似加上动态均值字段理论,我们明确地证明了局部动力相关性对于对出现的近相质质量的一致理解和Mott局部电子状态的一致理解的重要性,显示了材料依赖性的单电子GGA Linehape和多孔电子相互作用之间的相互作用。为了探测相关的顺磁性电子状态,我们对CRCL 3和CRBR 3散装晶体进行了X射线吸收光谱(XAS)测量。我们相关的多体研究与了解顺磁性CR-Trihalides晶体的电子结构重建有关,并应广泛适用于其他范德华磁铁材料。
与其六角形对应物不同的菱形堆叠的过渡金属二色元(3R-TMD)表现出较高的载流子迁移率,滑动铁电性,并相干增强了非线性光学响应。然而,很难大型多层单晶单晶的表面外延生长。我们报告了一种界面外观方法,用于它们的几种成分,包括二硫化钼(MOS 2),二苯胺钼,二硫化牛二硫化物,二硫化钨,二硫代二硫化钨,二硫化二硫化物,二硫化硫化物,二氮氮化物,二氧化氢和丙二氧化氢脱硫酸盐。将金属和果酱饲喂持续到单晶Ni底物和生长层之间的界面可确保一致的3R堆叠序列,并从几层到15,000层受控厚度。全面的特征证实了这些薄膜的大规模均匀性,高结晶度和相位纯度。生长的3R-MOS 2分别显示出双层和三层的室温迁移率最高为155和190平方厘米。具有厚3R-MOS 2的光学差异频率产生在准相匹配条件下显示出明显增强的非线性响应(比单层大5个数量级)。t
图2:普鲁士白色材料,其立方体和菱形晶体结构。在这些结构中,高旋转过渡金属离子由红色球表示,低旋转过渡金属离子由绿色球体表示。配位polyhedra略微透明,根据其中央原子的颜色进行颜色。氮原子由蓝色球体,灰色球体的碳原子和黄色球体代表。
Wenjia Zhang 2 , Hao Cai 1,4 , Yuan Tian 1 , Yuanyuan Hu 3 , Li Zhang 1 , Lijie Zhang 1 , Zhihui Qin 1 ,
推荐引用推荐引用Visvanathan,Abhirami; Saulnier,Olivier; Chen,Chuan;霍尔迪普尔,帕尔西夫;奥利斯(Orisme),怀尔德(Wilda); Alberto的Delaidelli; Shin,Seungmin;米尔曼,杰克;科比,安德鲁; Abeysundara,Namal;吴,Xujia;亨德里克斯(Liam D);帕蒂尔,维卡斯; Zahedeh Bashardanesh;戈尔瑟(Joseph);利文斯顿,布林G;中岛,武马; Funakoshi,Yusuke; ong,温妮; Rasnitsyn,Alexandra; Aldinger,金伯利A;里奇曼(Richman),科里(Cory M); Van Ommeren,Randy;李,约翰·J·; Ly,Michelle; Vladoiu,Maria C;凯特林的卡拉斯;巴林,波琳娜;埃里克森(Erickson),安德斯(Anders W);方,弗农;张,乔;苏阿雷斯,劳尔A;王,豪;黄,宁;帕洛塔,乔纳尔·G;道格拉斯(Tajana); Haapasalo,Joonas; Razavi,Ferechte; Silvestri,Evelina; Sirbu,Olga;索曼莎(Samantha)蠕虫; Kameda-Smith,Michelle M;吴,小牛;丹尼尔斯,克雷格; Michaelraj,Antony K;巴杜里(Bhaduri),阿帕纳(Aparna);丹尼尔·舒拉梅克;铃木,Hiromichi; Garzia,Livia;艾哈迈德,纳比尔;克莱德曼(Kleinman),克劳迪亚(Claudia L);斯坦,林肯D;德克斯,彼得;邓纳姆,克里斯托弗;纳达(Jabado),纳达(Nada); Rich,Jeremy N;李,魏; Sorensen,Poul H; Wechsler-Reya,Robert J;魏斯,威廉A; Millen,Kathleen J;埃里森(David W) Dimitrov,Dimiter S;和泰勒(Michael D),“早期的菱形唇脂蛋白+VE干细胞中的人类特异性神经血管生态裂市场启动并维持3组髓母细胞瘤”(2024)。教职员工出版物。2593。https://digitalcommons.library.tmc.edu/baylor_docs/2593
背景:搜索手性超导体有几个令人信服的理由,其中超导性与明显的时间反向对称性断裂并存。首先,在大多数固体中,与电子配对相关的能量尺度远小于典型的动力学能量,因此超导性的出现取决于电子分散体的退化:e(k)= e(-k)。这种情况让人联想到筑巢,最终受时间逆转或反转等对中的控制,这甚至使相对较弱的吸引人的相互作用甚至具有深远的影响。因此,在没有这种对称性的情况下,观察超偏性的观察强烈表明存在新的物理学。其次,寻找手性超导体与追求拓扑超导的追求密切相关,拓扑超导能力是一种凝结物理学的圣杯。具有无旋转单组分Fermi表面的二维超导体很可能表现出时间雷达对称性破坏P + IP配对。这种类型的超导性与涡流和边缘中Majorana零模式的存在有关,这是拓扑量子计算的关键资源。这种p波配对被认为是在超氟中实现的,在ν= 5
菱形堆叠的几层石墨烯(FLG)显示出奇特的电子特性,这些特性可能导致现象,例如高温超导性和磁性排序。迄今为止,经验研究主要受到厚度超过3层和设备兼容大小的菱形flg的困难限制。在这项工作中,我们证明了菱形石墨烯的合成和转移,厚度高达9层,面积高达〜50 m m 2。通过拉曼光谱法鉴定了菱形FLG的结构域,并在类似条纹的构造中发现与同一晶体内的伯纳尔区域交替。接近局限的纳米成像进一步确定了相应堆叠顺序的结构完整性。组合的光谱和微观分析表明,菱形堆积的形成与基础铜施加块密切相关,并导致沿着优先晶体学方向沿着层间位移而出现。菱形对厚度和大小的生长和转移应促进预测的非常规物理学的观察,并最终增加其技术相关性。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
Fortus 2-20 菱形脏环 2-21 单独最小半径转弯 2-22 双 Farvel 2-23 对抗最小半径转弯 2-24 梯队游行 2-25 对抗水平翻滚 2-26 左梯队翻滚 2-27 转换翻滚 2-27a 潜行传球,蓝天使 5 2-28 潜行至垂直翻滚,蓝天使 6 2-29 并排环圈 2-30 对抗四点翻滚 2-31 菱形垂直突破 2-32 垂直俯仰 2-33 桶滚突破 2-34 翻滚 2-35 菱形低突破交叉 2-36 分段高阿尔法传球 2-37 菱形燃烧器 270 2-38 三角翻滚 2-39 百合花 2-40 环突破/6 平面交叉 2-41 三角突破 2-42三角洲平飞传球/俯仰突破 3-10
理论上研究了接近性诱导的自旋轨道和交换耦合对菱形三层石墨烯(RTG)相关相图的影响。通过使用Ab Initif拟合的RTG的有效模型,该模型由过渡金属二分法(自旋 - 轨道接近效应)和铁磁CR 2 GE 2 TE 6(交换接近效应),我们将库仑相互作用纳入了随机相互作用,以探索在不同的位置和不同位置的潜在相关阶段。我们发现,由旋转轨道接近效应引起的丰富的自旋瓦利分辨石头和Intervalley相干性不稳定性,例如由于存在谷化量的耦合而出现了旋转 - 瓦利 - 固定相。同样,接近交换通过偏置旋转方向来消除相位变性,从而实现了磁相关效应 - 相关相位对封装铁磁性层的相对磁化方向(平行或反平行)的强灵敏度。