助理教授将有望:(1)开发,培育和扩展一项由外部资金支持的动态,高影响力的研究计划,包括与我们本地和地区医疗中心的合作伙伴建立生产性合作,并利用了该系与田纳西大学健康科学中心(Universityee Science Science Center)(UTHSC)的工程的联合BME BME研究生计划的协同合作的机会。(2)在一个充满活力的企业家友好的城市中,从事相关科学和医学学科的创新,这是医疗设备行业的枢纽。(3)教书并为本科和研究生课程做出贡献。(4)有助于研究领域,例如成像,生物力学,生物印刷,增材制造,生物材料/药物递送,植入物,组织/再生医学工程,生物电性,仪器和/或生物传感器技术。(5)为系,大学,大学和专业社区提供服务。
2020年,挪威公共卫生研究所(NIPH)的审查和卫生技术评估集群(HTV)建立了一个专门的机器学习(ML)团队。此后,ML团队已成为将ML整合和实施ML纳入证据综合的国际领导者。ML团队的总体目标是以最能结合人类智能和ML的方式使用ML,通过弄清楚如何在整个审查过程中弄清楚如何最好地整合ML和工作流程变化来增强人类活动。本报告根据团队在2020年成立以来的经验提出了ML 3.0S策略建议。响应我们研究所的不断发展的需求以及与研究所和部门的战略目标保持一致,该提议提倡ML团队提高到2024年及以后的部门水平。这将确保长期可持续性并减轻HTV的财务负担。此外,我们提出了一个重组的组织框架与三个团队:创新和地平线扫描,评估和证据建设,实施和支持,以及指导委员会,以协调活动并参与外部网络。
R. STAHL 的全球总部位于德国瓦尔登堡。R.STAHL Inc. 位于德克萨斯州休斯顿,以其世界一流的制造、工程和技术服务能力而自豪。在这里,我们的工程师齐心协力,为全球复杂系统开发量身定制、可靠且经济高效的解决方案。项目管理和生产部门在最先进的设施中并肩工作,以促进整个生产过程中所有部门之间的沟通与合作。扁平层级、灵活性和开放对话描述了我们的文化。我们庞大的组件和系统组合是世界上最全面的产品之一,是我们防爆系统解决方案的基础,所有这些解决方案都经过精心设计,可以无缝协作。这确保了我们的客户所需的可靠性以及项目成功的保证。我们的专家代表将随时向您通报项目状态。我们位于魏玛和科隆(德国)、斯塔万格(挪威)、亨厄洛(荷兰)、金奈(印度)和上海(中国)的其他制造工厂也遵循同样的高标准。
研究生工程师(研究) 2015 年夏季 - 2016 年冬季 • 研究多个政府资助项目的 GPU 网络策略。 • 为 AMD 的 ROCm 软件堆栈编写开源 GPU 网络运行时。 • 为外部资助提案做出贡献,以扩大 AMD 研究组合的广度。 • 将通过研究获得的网络见解融入 AMD 的产品路线图。 • 为 AMD 的事件驱动、周期级 CPU/GPU 模拟器贡献新功能和性能优化。 • 指导多个实习项目和新员工。 • 面试多个技术领域的职位候选人。 • 撰写并在国内外会议上发表多篇出版物。 • 撰写 10 多项专利申请以保护 AMD 的竞争性知识产权。
2 回顾WBG器件、SiC MOSFET、电源模块及其可靠性挑战。 6 2.1 WBG 器件 6 2.2 SiC MOSFET 特性 8 2.2.1 V gs(栅极 - 源极电压) 10 2.2.2 阈值电压 (V th ) 11 2.2.3 导通电阻 R on 12 2.3 SiC 功率模块 14 2.4 SiC 功率模块的当前行业实践 18 2.5 SiC MOSFET 的故障症状 21 2.5.1 栅极氧化层故障 21 2.5.2 体二极管故障 23 2.5.3 栅极漏电流故障 25 2.5.4 导致故障的雪崩事件 27 2.6 可靠性简介 28 2.6.1 功率模块中的电源循环 29 2.6.2 热膨胀和诱发应力 30 2.7 电源循环故障模式 31 2.7.1 引线键合疲劳 32 2.7.2 士兵退化 33 2.7.3 金属化重建 34 2.8 功率循环测试 35 2.8.1 功率循环寿命模型 38
1。(2023,Neurips Conference)Will,G。Behrens,J。Busecke,N。Lose,C。Stern,T。Beucler等。:攀登:用于混合物理机器学习气候仿真的大型多尺度数据集。神经信息处理系统的进步。“ Oustanding数据集和基准测试”奖。2。(2023年,Neurips Workshop)Lin,J.,M。A. Bhouri,T。Beucler,S。Yu&M。Pritchard:在看不见,温暖的气候下,应对混合物理学机器学习气候模拟的压力测试。2023神经信息处理系统会议。3。(2021,Neurips Workshop)Mangipudi,H.,G。Mooers,M。Pritchard,T。Beucler&S。Mandt:使用多通道VAE分析高分辨率云和对流。2021神经信息处理系统会议。4。(2020年,Igarss)Beucler,T.,M。Pritchard,P。Gentine&S。Rasp:迈向物理上一致的数据驱动的对流模型。IEEE国际地球科学和遥感研讨会2020年。5。(2020年,气候信息学)Mooers,G.,J。Tuyls,S.Mandt,M。Pritchard&T。Beucler:大气对流的生成建模。第十届国际气候信息学会议的会议记录,98-105。6。(2019年,ICML研讨会)Beucler,T.,S。Rasp,M。Pritchard&P。Gentine:在气候建模中实现神经网络模拟器中的能量保护。2019年国际机器学习会议。